1 G89.2229 Lect 4M Interpreting multiple regression weights: suppression and spuriousness. Partial and semi-partial correlations Multiple regression in.

Slides:



Advertisements
Similar presentations
Applied Informatics Štefan BEREŽNÝ
Advertisements

Redundancy and Suppression
Matrices A matrix is a rectangular array of quantities (numbers, expressions or function), arranged in m rows and n columns x 3y.
Matrix Algebra Matrix algebra is a means of expressing large numbers of calculations made upon ordered sets of numbers. Often referred to as Linear Algebra.
Matrix Algebra Matrix algebra is a means of expressing large numbers of calculations made upon ordered sets of numbers. Often referred to as Linear Algebra.
1 G Lect 5W Regression assumptions Inferences about regression Predicting Day 29 Anxiety Analysis of sets of variables: partitioning the sums of.
MF-852 Financial Econometrics
Maths for Computer Graphics
The Simple Linear Regression Model: Specification and Estimation
Review of Matrix Algebra
Chapter 2 Matrices Definition of a matrix.
Ch 7.2: Review of Matrices For theoretical and computation reasons, we review results of matrix theory in this section and the next. A matrix A is an m.
1 Neural Nets Applications Vectors and Matrices. 2/27 Outline 1. Definition of Vectors 2. Operations on Vectors 3. Linear Dependence of Vectors 4. Definition.
Economics 2301 Matrices Lecture 13.
Basic Mathematics for Portfolio Management. Statistics Variables x, y, z Constants a, b Observations {x n, y n |n=1,…N} Mean.
Linear regression models in matrix terms. The regression function in matrix terms.
Matrix Approach to Simple Linear Regression KNNL – Chapter 5.
Intro to Matrices Don’t be scared….
Arithmetic Operations on Matrices. 1. Definition of Matrix 2. Column, Row and Square Matrix 3. Addition and Subtraction of Matrices 4. Multiplying Row.
CE 311 K - Introduction to Computer Methods Daene C. McKinney
3.8 Matrices.
Chapter 1: Matrices Definition 1: A matrix is a rectangular array of numbers arranged in horizontal rows and vertical columns. EXAMPLE:
1 Operations with Matrice 2 Properties of Matrix Operations
1 Chapter 3 Matrix Algebra with MATLAB Basic matrix definitions and operations were covered in Chapter 2. We will now consider how these operations are.
Multivariate Data and Matrix Algebra Review BMTRY 726 Spring 2012.
Row 1 Row 2 Row 3 Row m Column 1Column 2Column 3 Column 4.
UnB - Financial Econometrics I Otavio Medeiros 1 The Matrix Otavio R. de Medeiros UnB Programa de Pós-Graduação em Administração Programa Multiinstitucional.
Matrices Square is Good! Copyright © 2014 Curt Hill.
1 G Lect 1w Structure of course Overview of Regression Topics Some Advanced Topics (beyond this course) Example 1 Expectations Example 2 G
Statistics and Linear Algebra (the real thing). Vector A vector is a rectangular arrangement of number in several rows and one column. A vector is denoted.
G Lect 21 G Lecture 2 Regression as paths and covariance structure Alternative “saturated” path models Using matrix notation to write linear.
Chapter 9 Analyzing Data Multiple Variables. Basic Directions Review page 180 for basic directions on which way to proceed with your analysis Provides.
Overview Definitions Basic matrix operations (+, -, x) Determinants and inverses.
Matrices. A matrix, A, is a rectangular collection of numbers. A matrix with “m” rows and “n” columns is said to have order m x n. Each entry, or element,
Copyright © 2011 Pearson, Inc. 7.2 Matrix Algebra.
Matrices. Definitions  A matrix is an m x n array of scalars, arranged conceptually as m rows and n columns.  m is referred to as the row dimension.
Matrix Algebra and Regression a matrix is a rectangular array of elements m=#rows, n=#columns  m x n a single value is called a ‘scalar’ a single row.
Multivariate Statistics Matrix Algebra I W. M. van der Veld University of Amsterdam.
MAT 2401 Linear Algebra 2.1 Operations with Matrices
Linear algebra: matrix Eigen-value Problems Eng. Hassan S. Migdadi Part 1.
Introduction to Matrices and Matrix Approach to Simple Linear Regression.
Chapter 6 Systems of Linear Equations and Matrices Sections 6.3 – 6.5.
Meeting 18 Matrix Operations. Matrix If A is an m x n matrix - that is, a matrix with m rows and n columns – then the scalar entry in the i th row and.
Special Topic: Matrix Algebra and the ANOVA Matrix properties Types of matrices Matrix operations Matrix algebra in Excel Regression using matrices ANOVA.
Chapter 2 … part1 Matrices Linear Algebra S 1. Ch2_2 2.1 Addition, Scalar Multiplication, and Multiplication of Matrices Definition A matrix is a rectangular.
Unit 3 Matrix Arithmetic IT Disicipline ITD 1111 Discrete Mathematics & Statistics STDTLP 1 Unit 3 Matrix Arithmetic.
Matrices and Determinants
Matrices and Matrix Operations. Matrices An m×n matrix A is a rectangular array of mn real numbers arranged in m horizontal rows and n vertical columns.
MATRIX A set of numbers arranged in rows and columns enclosed in round or square brackets is called a matrix. The order of a matrix gives the number of.
1 G Lect 3M Regression line review Estimating regression coefficients from moments Marginal variance Two predictors: Example 1 Multiple regression.
LEARNING OUTCOMES At the end of this topic, student should be able to :  D efination of matrix  Identify the different types of matrices such as rectangular,
1 G Lect 4W Multiple regression in matrix terms Exploring Regression Examples G Multiple Regression Week 4 (Wednesday)
1 Objective To provide background material in support of topics in Digital Image Processing that are based on matrices and/or vectors. Review Matrices.
Matrices. Variety of engineering problems lead to the need to solve systems of linear equations matrixcolumn vectors.
MATRICES A rectangular arrangement of elements is called matrix. Types of matrices: Null matrix: A matrix whose all elements are zero is called a null.
College Algebra Chapter 6 Matrices and Determinants and Applications
MTH108 Business Math I Lecture 20.
Linear Algebra Lecture 2.
Repeated Measures Analysis: An Example Math tools: Notation
Regression.
Systems of First Order Linear Equations
Matrix Algebra.
Matrices Definition: A matrix is a rectangular array of numbers or symbolic elements In many applications, the rows of a matrix will represent individuals.
Lecture 11 Matrices and Linear Algebra with MATLAB
Matrices and Matrix Operations
Matrix Definitions It is assumed you are already familiar with the terms matrix, matrix transpose, vector, row vector, column vector, unit vector, zero.
Matrix Algebra.
3.5 Perform Basic Matrix Operations Algebra II.
Presentation transcript:

1 G Lect 4M Interpreting multiple regression weights: suppression and spuriousness. Partial and semi-partial correlations Multiple regression in matrix terms G Multiple Regression Week 4 (Monday)

2 G Lect 4M Suppression Sometimes the semipartial effect for X 1 (i.e. b 1 ) in Y = b 0 + b 1 X 1 + b 2 X 2 + e is larger in absolute magnitude than the bivariate effect in Y = b 0 + b 1 X 1 + e This has been called suppression Example: »X 1 is stress »Y is distress »X 2 is coping Classic pattern is when one of the three correlations is negative.

3 G Lect 4M Spurious effect Consider a path model that resembles the mediation model. Suppose that there is a bivariate association between X and Y, but when W is considered, the semipartial effect b is zero. The original association is often said to be "spurious". It is explained by the common cause, W. Y eyey W X c b exex a

4 G Lect 4M Interpreting Fitted Variance in Multiple Regression Let the V(Y)=a+b+c+e=1 Squared multiple correlation R 2 Y12 =a+b+c The squared correlations are r 2 Y1 =a+c & r 2 Y2 =b+c The squared semipartial correlations are sr 2 Y12 = a sr 2 Y21 = b The squared partial correlations are pr 2 Y12 = a/(a+e) pr 2 Y21 = b/(b+e) X1X1 X2X2 Y a c b e

5 G Lect 4M Regression with many explanatory (X) variables Example: »Okazaki (1997) surveyed UCLA students and found that Asian- American students had higher levels of depression than Anglo-Americans »She built a regression model with multiple explanatory variables Gender (in case sample selection produced a spurious effect) Independent and interdependent self-construal (a mediation hypothesis) Fear of negative evaluation, and social avoidance (to see if depression effect was specific or generalized) »Equation has five X variables

6 G Lect 4M Multiple regression equations get complicated With five predictors: or: While the prediction equation is fairly easy to write, it is much more complicated to write equations for: »Estimates of b coefficients »Estimates of standard error of b coefficients

7 G Lect 4M Matrix notation actually simplifies equations Instead of Consider Or »X' is called a row vector »B is a column vector »The same notation is used regardless of the number of Xs

8 G Lect 4M Math tools: Vectors and Matrices It is often convenient to use lists of numbers for each person (or each variable) »Lists are called vectors »Lists of vectors are arrays called matrices E.g. The list of predictor variables for person i is: The X matrix includes all n observations:

9 G Lect 4M Vector definition & operations Definition: A vector is an ordered list of numbers: a T = [a 1 a 2... a p ] Transpose »If a is a vector with p elements in a column, then a T is a vector with the same elements arranged in a row. Vector Addition »If a and b are two vectors with p elements, (a i, b i ), then a+b is a new vector with elements given the the respective element sums. »[a+b] i = [a i + b i ]

10 G Lect 4M Vector Operations, Continued Vector Multiplication »If a and b are two vectors with p elements, (a i, b i ) then a T b =  a i b i = a 1 b 1 +a 2 b a p b p Example »a T = [0 0 –1 1] »b = »Then, a T b = b 3 – b 2 This is an example of a contrast vector

11 G Lect 4M Matrix operations Matrix definitions »A matrix can be viewed as a collection of vectors E.g.. a data matrix is made up of n rows of p variables The transpose of a matrix makes rows columns and vice versa Matrix Addition »[A+B] ij = [a ij + b ij ] Matrix Subtraction »[A-B] ij = [a ij - b ij ]

12 G Lect 4M Matrix Multiplication An Identity matrix, I, is a square matrix with ones on the diagonal and zeros on the off diagonal »A*I = A If a matrix A is square and full rank (nonsingular), then its inverse A -1 exists such that »A*A -1 = I

13 G Lect 4M Matrix Inverse In general, the elements of an inverse are not intuitive. As the number of rows/columns gets larger, they are more complex. For 2x2 matrix A E.G.

14 G Lect 4M Some facts about matrix multiplication In general, AB ~= BA »Commutative principle does not hold When A and B are square and full rank »(A*B) -1 = B -1 *A -1 Distributive principle holds »A(B+C) = AB + AC A matrix A can be multiplied by a single number, called a scalar, which sets the unit of the new matrix: »kA = [kA ij ]

15 G Lect 4M Regression equations in Matrix Terms Basic Regression equation »For randomly chosen observation Y = x T B + e »For sample of n subjects Y = XB + e e = Y  XB Y = [1 X 1 X 2 ] B 0 + e B 1 B 2 Y 1 1 X 11 X 12 B 0 e 1 Y 2 = 1 X 21 X 22 B 1 + e 2 Y 3 1 X 31 X 32 B 2 e 3

16 G Lect 4M Least Squares Estimates of B The OLS estimates of B make e T e as small as possible. »This happens when the geometric representation of e is shortest. »e will be shortest when it is orthogonal to the predictors, X X T e = X T (Y- XB) = 0 X T (Y  XB) = X T Y  X T XB = 0 X T Y  X T XB When (X T X) -1 exists: