Lecture 2 Part a: Numerical Measures

Slides:



Advertisements
Similar presentations
Measures of Location and Dispersion
Advertisements

Describing Data: Measures of Central Tendency
BUS 220: Elementary Statistics
Chapter Three McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved
Math Qualification from Cambridge University
Calculating & Reporting Healthcare Statistics
Descriptive Statistics – Central Tendency & Variability Chapter 3 (Part 2) MSIS 111 Prof. Nick Dedeke.
B a c kn e x t h o m e Parameters and Statistics statistic A statistic is a descriptive measure computed from a sample of data. parameter A parameter is.
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 2-1 Statistics for Business and Economics 7 th Edition Chapter 2 Describing Data:
Chapters 3 & 4 Alan D. Smith Descriptive Statistics -
Ka-fu Wong © 2004 ECON1003: Analysis of Economic Data Lesson2-1 Lesson 2: Descriptive Statistics.
Biostatistics Unit 2 Descriptive Biostatistics 1.
Slides by JOHN LOUCKS St. Edward’s University.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 3-1 Introduction to Statistics Chapter 3 Using Statistics to summarize.
Describing Data: Numerical Measures
Chap 3-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 3 Describing Data: Numerical Statistics for Business and Economics.
Describing Data: Numerical Measures
3 - 1 Copyright © 2004 by The McGraw-Hill Companies, Inc. All rights reserved.
Describing Data Measures of Location Goals
Describing Data: Numerical Measures
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Describing Data: Numerical Measures Chapter 3.
Lecture 4 Dustin Lueker.  The population distribution for a continuous variable is usually represented by a smooth curve ◦ Like a histogram that gets.
Describing Data: Numerical
Chapter 3 Descriptive Measures
Describing Data: Numerical Measures Chapter 3 McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Numerical Descriptive Techniques
Chapter 3 – Descriptive Statistics
Introduction and Descriptive Statistics
JDS Special Program: Pre-training1 Basic Statistics 01 Describing Data.
Describing Data: Numerical Measures Chapter 3 McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Copyright (C) 2002 Houghton Mifflin Company. All rights reserved. 1 Understandable Statistics Seventh Edition By Brase and Brase Prepared by: Lynn Smith.
Describing Data: Numerical Measures Chapter 03 McGraw-Hill/Irwin Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved.
Describing Data: Numerical Measures. GOALS 1.Calculate the arithmetic mean, weighted mean, median, mode, and geometric mean. 2.Explain the characteristics,
According to researchers, the average American guy is 31 years old, 5 feet 10 inches, 172 pounds, works 6.1 hours daily, and sleeps 7.7 hours. These numbers.
Dr. Serhat Eren 1 CHAPTER 6 NUMERICAL DESCRIPTORS OF DATA.
Understanding Basic Statistics Fourth Edition By Brase and Brase Prepared by: Lynn Smith Gloucester County College Chapter Three Averages and Variation.
Chapter Three McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved
Business Statistics Spring 2005 Summarizing and Describing Numerical Data.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Describing Data: Numerical Measures Chapter 3.
Chapter 3: Central Tendency. Central Tendency In general terms, central tendency is a statistical measure that determines a single value that accurately.
Chapter Three McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved. Describing Data: Numerical Measures.
Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 3-1 Business Statistics, 4e by Ken Black Chapter 3 Descriptive Statistics.
Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
Describing Data: Numerical Measures Chapter 3 McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.
Chapter Three McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved.
Chapter 3 Descriptive Statistics: Numerical Methods.
Describing Data: Numerical Measures Chapter 03 Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
Day 2. GOALS 1.Calculate the arithmetic mean, weighted mean, median, mode, and geometric mean. 2.Explain the characteristics, uses, advantages, and disadvantages.
Summarizing Data with Numerical Values Introduction: to summarize a set of numerical data we used three types of groups can be used to give an idea about.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Describing Data: Numerical Measures Chapter 3.
Describing Data: Numerical Measures Chapter 3 McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.
Describing Data: Numerical Measures
Statistics for Business
Chapter 3 Describing Data Basic Statistics for Business and Economics
Topic 3: Measures of central tendency, dispersion and shape
Introduction and Descriptive Statistics
Chapter 3 Created by Bethany Stubbe and Stephan Kogitz.
Descriptive Statistics
Characteristics of the Mean
MEASURES OF CENTRAL TENDENCY
Describing Data: Numerical Measures
BUS7010 Quant Prep Statistics in Business and Economics
Describing Data: Numerical Measures
Describing Data: Numerical Measures
Describing Data: Numerical Measures
Describing Data: Numerical Measures
Describing Data: Numerical Measures
Presentation transcript:

Lecture 2 Part a: Numerical Measures

GOALS Calculate the arithmetic mean, weighted mean, median, mode, and geometric mean. Explain the characteristics, uses, advantages, and disadvantages of each measure of location. Compute and interpret the range, mean deviation, variance, and standard deviation. Understand the characteristics, uses, advantages, and disadvantages of each measure of dispersion. Understand Chebyshev’s theorem and the Empirical Rule as they relate to a set of observations.

Characteristics of the Mean The arithmetic mean is the most widely used measure of location. It requires the interval scale. Its major characteristics are: All values are used. It is unique. The sum of the deviations from the mean is 0. It is calculated by summing the values and dividing by the number of values.

Arithmetic Mean The most common measure of central tendency (continued) The most common measure of central tendency Mean = sum of values divided by the number of values Affected by extreme values (outliers) 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 Mean = 3 Mean = 4

Population Mean Population mean , For ungrouped data, the population mean is the sum of all the population values divided by the total number of population values: Population mean , μ represents the population mean. It is the Greek letter “mu.” N is the number of items in the population. X is any particular value. Σ indicates the operation of adding all the values. It is the Greek letter “sigma.” ΣX is the sum of the X values.

Sample Mean For ungrouped data, the sample mean is the sum of all the sample values divided by the number of sample values: Sample Mean,   is the sample mean; it is read as “X bar”. n  is the number of values in the sample. X  is a particular value. Σ  indicates the operation of adding all the values. ΣX  is the sum of the X values.

Weighted Mean The weighted mean of a set of numbers X1, X2, ..., Xn, with corresponding weights w1, w2, ...,wn, is computed from the following formula:

EXAMPLE – Weighted Mean The hawker pays its hourly employees $16.50, $19.00, or $26.00 per hour. There are 26 hourly employees, 14 of which are paid at the $16.50 rate, 10 at the $19.00 rate, and 2 at the $26.00 rate. What is the mean hourly rate paid the 26 employees?

The Median The Median is the midpoint of the values after they have been ordered from the smallest to the largest. There are as many values above the median as below it in the data array. For an even set of values, the median will be the arithmetic average of the two middle numbers.

Median In an ordered array, the median is the “middle” number (50% above, 50% below) Not affected by extreme values If the number of values is odd, the median is the middle number If the number of values is even, the median is the average of the two middle numbers 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 Median = 3 Median = 3

EXAMPLES - Median The heights of four basketball players, in inches, are: 76, 73, 80, 75 Arranging the data in ascending order gives: 73, 75, 76, 80. Thus the median is 75.5 The ages for a sample of five college students are: 21, 25, 19, 20, 22 Arranging the data in ascending order gives: 19, 20, 21, 22, 25. Thus the median is 21.

The Mode The mode is the value of the observation that appears most frequently. Mode = 9 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

The Geometric Mean Useful in finding the average change of percentages, ratios, indexes, or growth rates over time. It has a wide application in business and economics in finding the percentage changes in figures, such as the GDP. The geometric mean will always be less than or equal to the arithmetic mean. The geometric mean of a set of n positive numbers is defined as the nth root of the product of n values. The formula for the geometric mean is written:

EXAMPLE – Geometric Mean Suppose you receive a 5 percent increase in salary this year and a 15 percent increase next year. The average annual percent increase is 9.886, not 10.0. Why is this so? We begin by calculating the geometric mean.

EXAMPLE – Geometric Mean (2) The return on investment earned by Atkins construction Company for four successive years was: 30 percent increase, 20 percent increase, 40 percent loss followed by 200 percent increase. What is the geometric mean rate of return on investment?

Dispersion Why Study Dispersion? A measure of location, such as the mean or the median, only describes the center of the data. It is valuable from that standpoint, but it does not tell us anything about the spread of the data. For example, if your nature guide told you that the river ahead averaged 3 feet in depth, would you want to wade across on foot without additional information? Probably not. You would want to know something about the variation in the depth. A second reason for studying the dispersion in a set of data is to compare the spread in two or more distributions.

Measures of Dispersion Measures of variation give information on the spread or variability of the data values. Same center, different variation

Measures of Dispersion Range Mean Deviation Variance and Standard Deviation

Range = Xlargest – Xsmallest EXAMPLE – Range Simplest measure of variation Difference between the largest and the smallest observations: Range = Xlargest – Xsmallest The number of cappuccinos sold at the Starbucks location in the Orange Country Airport between 4 and 7 p.m. for a sample of 5 days last year were 20, 40, 50, 60, and 80. Determine the range. Range= 80 – 20 = 60

EXAMPLE – Mean Deviation For the same example with a sample date of 20, 40, 50, 60, and 80. Determine the mean deviation for the number of cappuccinos sold. First find mean: (20+ 40+ 50+ 60+ 80)/5=50

EXAMPLE – Population Variance and S.D. The number of traffic citations issued during the last five months in Beaufort County, South Carolina, is 38, 26, 13, 41, and 22. What is the population variance? Population Standard Deviation is

EXAMPLE – Sample Variance and S.D. The hourly wages for a sample of part-time employees at Home Depot are: $12, $20, $16, $18, and $19. What is the sample variance? Sample Standard Deviation is

Chebyshev’s Theorem The arithmetic mean biweekly amount contributed by the ABC company employees to the company’s profit-sharing plan is $51.54, and the standard deviation is $7.51. At least what percent of the contributions lie within plus 3.5 standard deviations and minus 3.5 standard deviations of the mean?

The Empirical Rule If a sample of observations has a mound- shaped distribution, the interval

Mean of ungrouped vs. grouped data

Standard deviation for ungrouped vs. grouped data

Questions?