Nh©n mét sè víi mét tæng Nh©n mét tæng víi mét sè Sè « vu«ng xanh lµ: 4 x 3 Sè « vu«ng ®á lµ: 4 x 2 Toµn bé sè « vu«ng lµ: 4 x 3 + 4 x 2 12 + 8 = 20 Sè.

Slides:



Advertisements
Similar presentations
EcoTherm Plus WGB-K 20 E 4,5 – 20 kW.
Advertisements

Números.
M«n To¸n líp 4 GV: Ph¹m thÞ H¹nh ®¬n VÞ: TR¦êNG tiÓu häc yªn phó PHßNG GI¸O DôC ®µo t¹o ý yªn.
Un percorso realizzato da Mario Malizia
You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Thø n¨m, ngµy 10 th¸ng 1 n¨m 2013 To¸n KiÓm tra bµi cò Nªu ®Æc ®iÓm cña h×nh b×nh hµnh ? Trong c¸c h×nh sau h×nh nµo lµ h×nh b×nh hµnh ?
Fill in missing numbers or operations
Understand multiplication and division as inverses
Multiplication and division as arrays 1) 2)3) 4)5) 7) 6) 8) 9) Use each array to write 2 multiplication and 2 division sentences ©
EuroCondens SGB E.
Table de multiplication, division, addition et soustraction.
& dding ubtracting ractions.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Multiplication X 1 1 x 1 = 1 2 x 1 = 2 3 x 1 = 3 4 x 1 = 4 5 x 1 = 5 6 x 1 = 6 7 x 1 = 7 8 x 1 = 8 9 x 1 = 9 10 x 1 = x 1 = x 1 = 12 X 2 1.
Division ÷ 1 1 ÷ 1 = 1 2 ÷ 1 = 2 3 ÷ 1 = 3 4 ÷ 1 = 4 5 ÷ 1 = 5 6 ÷ 1 = 6 7 ÷ 1 = 7 8 ÷ 1 = 8 9 ÷ 1 = 9 10 ÷ 1 = ÷ 1 = ÷ 1 = 12 ÷ 2 2 ÷ 2 =
Fraction IX Least Common Multiple Least Common Denominator
We need a common denominator to add these fractions.
Add Governors Discretionary (1G) Grants Chapter 6.
CALENDAR.
Multiplication Facts Review. 6 x 4 = 24 5 x 5 = 25.
1 1  1 =.
27  9 =.
7 7 = = = = = = 3.
1  1 =.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Around the World AdditionSubtraction MultiplicationDivision AdditionSubtraction MultiplicationDivision.
Year 5 Term 3 Unit 6b Day 1.
The 5S numbers game..
A Fractional Order (Proportional and Derivative) Motion Controller Design for A Class of Second-order Systems Center for Self-Organizing Intelligent.
Training Objective: students will be able to evaluate expressions using the order of operations.
Break Time Remaining 10:00.
Division- the bus stop method
© Richard A. Medeiros 2004 x y Function Machine Function Machine next.
PP Test Review Sections 6-1 to 6-6
Least Common Multiple (LCM)
DIVISIBILITY, FACTORS & MULTIPLES
Look at This PowerPoint for help on you times tables
Times tables By Chloe and Izzy.
Least Common Multiple LCM 2 Methods
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
Fraction IX Least Common Multiple Least Common Denominator
Adding Up In Chunks.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
UNIT 2: SOLVING EQUATIONS AND INEQUALITIES SOLVE EACH OF THE FOLLOWING EQUATIONS FOR y. # x + 5 y = x 5 y = 2 x y = 2 x y.
Least Common Multiples and Greatest Common Factors
Before Between After.
25 seconds left…...
Subtraction: Adding UP
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
Week 1.
Number bonds to 10,
2 x0 0 12/13/2014 Know Your Facts!. 2 x1 2 12/13/2014 Know Your Facts!
Static Equilibrium; Elasticity and Fracture
Fractions Simplify: 36/48 = 36/48 = ¾ 125/225 = 125/225 = 25/45 = 5/9
Converting a Fraction to %
Clock will move after 1 minute
Multiplication Mania PowerPoint Presentation Keri Dowdy Sedalia Elementary 3 rd grade Multiplication.
& dding ubtracting ractions.
Number Factors and Multiples Saturday, 09 September 2006 ©RSH.
Physics for Scientists & Engineers, 3rd Edition
Using Lowest Common Denominator to add and subtract fractions
Select a time to count down from the clock above
1 Non Deterministic Automata. 2 Alphabet = Nondeterministic Finite Accepter (NFA)
BREAK IT DOWN! DISTRIBUTIVE PROPERTY. A product can be rewritten as the sum of two products or the difference between two products. Students often only.
Multiplication Facts Practice
Graeme Henchel Multiples Graeme Henchel
0 x x2 0 0 x1 0 0 x3 0 1 x7 7 2 x0 0 9 x0 0.
7x7=.
Presentation transcript:

Nh©n mét sè víi mét tæng Nh©n mét tæng víi mét sè Sè « vu«ng xanh lµ: 4 x 3 Sè « vu«ng ®á lµ: 4 x 2 Toµn bé sè « vu«ng lµ: 4 x x = 20 Sè « vu«ng ë mét cét lµ: 4 Sè « vu«ng ë mét hµng lµ: Nh©n tr­íc sè víi tõng sè h¹ng råi céng l¹i TÝnh tæng tr­íc råi nh©n sè víi tæng Toµn bé sè « vu«ng lµ: 4 x (3 + 2) 4 x 5 = 20

Nh©n mét sè víi mét tæng Nh©n mét tæng víi mét sè bµi 1: TÝnh theo 2 c¸ch TÝnh tæng tr­ íc Nh©n tr­íc víi tõng sè h¹ng 6x(4 + 3) = 9x(2 + 7) = (5 + 4)x8 = 6 x 7 = 42 6 x x 3 = = 42 9 x 9 = 81 9 x x 7 = = 81 9 x 8 = 72 5 x x 8 = = 72

bµi 2: Ghi + vµo c¸ch tÝnh nhanh nhÊt 9 x 10 = 90 9 x x 6 = = 90 ( ) x6 = = 60 7 x 11 = 77 7 x x 3 = = 77 Nh©n mét sè víi mét tæng Nh©n mét tæng víi mét sè x ( ) = 7 x x 6 = 7 x ( ) =

Bµi 3 TÝnh theo c¸ch thÝch hîp ( ) x 3 = 4 x ( ) = (3 x x 5 ) = 16 x 5 = Nh©n mét sè víi mét tæng Nh©n mét tæng víi mét sè 8 x x 3 = = 39 4 x 10 = 40 5 x ( ) = 5 x 10 = 50 ( ) x 5 = 10 x x 5 = = 80

bµI 4 ? ch©n bß, dª Nh©n mét sè víi mét tæng Nh©n mét tæng víi mét sè

5 x ( ) = 5 x 4 5x6 + Nh©n mét sè víi mét tæng Nh©n mét tæng víi mét sè

( ) x 5 = 6 x 5 9 x 5 + Nh©n mét sè víi mét tæng Nh©n mét tæng víi mét sè

( a + b ) x n = a n + b n X X Nh©n mét sè víi mét tæng Nh©n mét tæng víi mét sè

m x a + m x b = m (a + b) X Nh©n mét sè víi mét tæng Nh©n mét tæng víi mét sè

(12 – 8 ) x 5 = 12 x 5 8 x 5 - Nh©n mét sè víi mét tæng Nh©n mét tæng víi mét sè

5 x ( 12 – 8 ) = 5 x 12 5 x 8 - Nh©n mét sè víi mét tæng Nh©n mét tæng víi mét sè

(a – b ) x n = a n – b n X X Nh©n mét sè víi mét tæng Nh©n mét tæng víi mét sè

X - m x a – m x b = m (a b ) Nh©n mét sè víi mét tæng Nh©n mét tæng víi mét sè