Linear Programming Problem

Slides:



Advertisements
Similar presentations
Lecture 3 Linear Programming: Tutorial Simplex Method
Advertisements

Linear Programming Graphical Solution Procedure. Two Variable Linear Programs When a linear programming model consists of only two variables, a graphical.
Lesson 08 Linear Programming
Introduction to Sensitivity Analysis Graphical Sensitivity Analysis
Ch 3 Introduction to Linear Programming By Kanchala Sudtachat.
CCMIII U2D4 Warmup This graph of a linear programming model consists of polygon ABCD and its interior. Under these constraints, at which point does the.
2-1 Linear Programming: Model Formulation and Graphical Solution Chapter 2 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.
BA 452 Lesson A.2 Solving Linear Programs 1 1ReadingsReadings Chapter 2 An Introduction to Linear Programming.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or.
Linear Programming Models: Graphical Methods
Linear Programming Unit 2, Lesson 4 10/13.
Chapter 2: Introduction to Linear Programming
An Introduction to Linear Programming : Graphical and Computer Methods
6s-1Linear Programming CHAPTER 6s Linear Programming.
To Accompany Russell and Taylor, Operations Management, 4th Edition,  2003 Prentice-Hall, Inc. All rights reserved by Prentice-Hall, Inc1  Model.
Objectives: Set up a Linear Programming Problem Solve a Linear Programming Problem.
LINEAR PROGRAMMING: THE GRAPHICAL METHOD
Chapter 3 An Introduction to Linear Programming
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
1 1 Slides by John Loucks St. Edward’s University Modifications by A. Asef-Vaziri.
Readings Readings Chapter 2 An Introduction to Linear Programming.
Stevenson and Ozgur First Edition Introduction to Management Science with Spreadsheets McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies,
FORMULATION AND GRAPHIC METHOD
1 1 Slide LINEAR PROGRAMMING: THE GRAPHICAL METHOD n Linear Programming Problem n Properties of LPs n LP Solutions n Graphical Solution n Introduction.
Stevenson and Ozgur First Edition Introduction to Management Science with Spreadsheets McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies,
LINEAR PROGRAMMING SIMPLEX METHOD.
Chapter 19 Linear Programming McGraw-Hill/Irwin
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS ST. EDWARD’S UNIVERSITY.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 6S Linear Programming.
1 1 Slide Linear Programming (LP) Problem n A mathematical programming problem is one that seeks to maximize an objective function subject to constraints.
MATH 527 Deterministic OR Graphical Solution Method for Linear Programs.
P I can solve linear programing problem. Finding the minimum or maximum value of some quantity. Linear programming is a form of optimization where.
Chapter 7 Introduction to Linear Programming
1 1 Slide © 2005 Thomson/South-Western Chapter 2 Introduction to Linear Programming n Linear Programming Problem n Problem Formulation n A Maximization.
Linear Programming McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Introduction to Linear Programming BSAD 141 Dave Novak.
LP: Summary thus far Requirements Graphical solutions Excel Sensitivity Analysis.
QMB 4701 MANAGERIAL OPERATIONS ANALYSIS
1 1 Slide © 2001 South-Western College Publishing/Thomson Learning Anderson Sweeney Williams Anderson Sweeney Williams Slides Prepared by JOHN LOUCKS QUANTITATIVE.
Linear Programming Problem. Definition A linear programming problem is the problem of optimizing (maximizing or minimizing) a linear function (a function.
A LINEAR PROGRAMMING PROBLEM HAS LINEAR OBJECTIVE FUNCTION AND LINEAR CONSTRAINT AND VARIABLES THAT ARE RESTRICTED TO NON-NEGATIVE VALUES. 1. -X 1 +2X.
Chapter 2 Introduction to Linear Programming n Linear Programming Problem n Problem Formulation n A Maximization Problem n Graphical Solution Procedure.
Monday WARM-UP: TrueFalseStatementCorrected Statement F 1. Constraints are conditions written as a system of equations Constraints are conditions written.
3.4: Linear Programming Objectives: Students will be able to… Use linear inequalities to optimize the value of some quantity To solve linear programming.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Supplement 6 Linear Programming.
3 Components for a Spreadsheet Optimization Problem  There is one cell which can be identified as the Target or Set Cell, the single objective of the.
Constraints Feasible region Bounded/ unbound Vertices
Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming Chapter 2.
Introduction to Quantitative Business Methods (Do I REALLY Have to Know This Stuff?)
3-5: Linear Programming. Learning Target I can solve linear programing problem.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
2-1 Modeling with Linear Programming Chapter Optimal Solution for New Objective Function Graphical Solution of Maximization Model (12 of 12) Maximize.
Operations Research By: Saeed Yaghoubi 1 Graphical Analysis 2.
1 Introduction to Linear Programming Linear Programming Problem Linear Programming Problem Problem Formulation Problem Formulation A Simple Maximization.
1 1 Slide Graphical solution A Graphical Solution Procedure (LPs with 2 decision variables can be solved/viewed this way.) 1. Plot each constraint as an.
Chapter 2 Linear Programming Models: Graphical and Computer Methods
An Introduction to Linear Programming
Decision Support Systems
An Introduction to Linear Programming Pertemuan 4
Chapter 2 An Introduction to Linear Programming
Linear Programming in Two Dimensions
Introduction to linear programming (LP): Minimization
Linear Systems Chapter 3.
Linear Programming Objectives: Set up a Linear Programming Problem
Graphical Solution Procedure
Max Z = x1 + x2 2 x1 + 3 x2  6 (1) x2  1.5 (2) x1 - x2  2 (3)
Linear Programming Problem
Graphical solution A Graphical Solution Procedure (LPs with 2 decision variables can be solved/viewed this way.) 1. Plot each constraint as an equation.
Presentation transcript:

Linear Programming Problem Problem Formulation A Maximization Problem Graphical Solution Procedure Extreme Points and the Optimal Solution Computer Solutions A Minimization Problem Special Cases

The maximization or minimization of some quantity is the objective in all linear programming problems. All LP problems have constraints that limit the degree to which the objective can be pursued. A feasible solution satisfies all the problem's constraints. An optimal solution is a feasible solution that results in the largest possible objective function value when maximizing (or smallest when minimizing). A graphical solution method can be used to solve a linear program with two variables.

If both the objective function and the constraints are linear, the problem is referred to as a linear programming problem. Linear functions are functions in which each variable appears in a separate term raised to the first power and is multiplied by a constant (which could be 0). Linear constraints are linear functions that are restricted to be "less than or equal to", "equal to", or "greater than or equal to" a constant.

Problem formulation or modeling is the process of translating a verbal statement of a problem into a mathematical statement.

Understand the problem thoroughly. Describe the objective. Describe each constraint. Define the decision variables. Write the objective in terms of the decision variables. Write the constraints in terms of the decision variables.

Example 1: LP Formulation Max 5x1 + 7x2 s.t. x1 < 6 2x1 + 3x2 < 19 x1 + x2 < 8 x1, x2 > 0

- Prepare a graph of the feasible solutions for each of the constraints. - Determine the feasible region that satisfies all the constraints simultaneously. - Draw an objective function line. - Move parallel objective function lines toward larger objective function values without entirely leaving the feasible region. Any feasible solution on the objective function line with the largest value is an optimal solution. Verify that the optimal solution occurs at a vertex with coordinated X1 = 5, and X2 = 3.

Constraint #2 Graphed x2 (0, 6 1/3) 2x1 + 3x2 = 19 (9 1/2, 0) x1

x2 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 Feasible Region x1

x2 Objective Function 5x1 + 7x2 = 46 Optimal Solution (x1 = 5, x2 = 3) x1

Slack and surplus variables represent the difference between the left and right sides of the constraints.

We see from your graph that: Objective Function Value = 46 Decision Variable #1 (x1) = 5 Decision Variable #2 (x2) = 3 Slack in Constraint #1 = 1 (= 6 - 5) Slack in Constraint #2 = 0 (= 19 - 19) Slack in Constraint #3 = 0 (= 8 - 8)

Solve graphically for the optimal solution: Max 2x1 + 6x2 s.t. 4x1 + 3x2 < 12 2x1 + x2 > 8 x1, x2 > 0 Conclusion: Infeasible

Solve graphically for the optimal solution: Max 3x1 + 4x2 s.t. x1 + x2 > 5 3x1 + x2 > 8 x1, x2 > 0 Conclusion: Unbounded

Solve Min 5x1 + 2x2 s.t. 2x1 + 5x2 > 10 4x1 - x2 > 12 x1 + x2 > 4 x1, x2 > 0

Min z = 5x1 + 2x2 x2 4x1 - x2 > 12 x1 + x2 > 4 2x1 + 5x2 > 10 3 2 1 x2 Min z = 5x1 + 2x2 4x1 - x2 > 12 x1 + x2 > 4 2x1 + 5x2 > 10 1 2 3 4 5 6 x1

Solve for the Extreme Point at the Intersection of the Two Binding Constraints 4x1 - x2 = 12 x1+ x2 = 4 Adding these two equations gives: 5x1 = 16 or x1 = 16/5. Substituting this into x1 + x2 = 4 gives: x2 = 4/5