ENGM 401 & 620 –X1 Fundamentals of Engineering Finance Fall 2010 Lecture 26: Other Analysis Techniques If you work just for money, you'll never make it,

Slides:



Advertisements
Similar presentations
Capital Budgeting Capital Budgeting: How managers plan significant outlays on projects that have long-term implications (such as the purchase of new equipment.
Advertisements

Incremental Analysis Lecture No. 21 Professor C. S. Park
Contemporary Engineering Economics, 4 th edition, © 2007 Incremental Analysis Lecture No. 28 Chapter 7 Contemporary Engineering Economics Copyright © 2006.
OPERATIONS MANAGEMENT INTEGRATING MANUFACTURING AND SERVICES FIFTH EDITION Mark M. Davis Janelle Heineke Copyright ©2005, The McGraw-Hill Companies, Inc.
Lecture 7 Evaluating a Single Project PW, FW, AW IRR
Capital Budgeting Chapter 12. Capital budgeting: process by which organization evaluates and selects long-term investment projects – Ex. Investments in.
MANAGERIAL ACCOUNTING
26-1 C APITAL B UDGETING LONG-RANGE PLANNING CHAPTER 26.
Capital Budgeting Decisions
State University of New York WARNING All rights reserved. No part of the course materials used in the instruction of this course may be reproduced in any.
Other Analysis Techniques
Capital Investments Chapter 12. Capital Budgeting How managers plan significant outlays on projects that have long-term implications such as the purchase.
© Mcgraw-Hill Companies, 2008 Farm Management Chapter 17 Investment Analysis.
© The McGraw-Hill Companies, Inc., 2005 McGraw-Hill/Irwin 26-1 CAPITAL BUDGETING Chapter 26.
ENGG 401 X2 Fundamentals of Engineering Management Spring 2008 Chapter 7: Other Analysis Techniques Dave Ludwick Dept. of Mechanical Engineering University.
Chapter 4. Economic Factors in Design The basis of design decisions will be economics. Designing a technically safe and sound system will be only part.
Investment Appraisal Techniques
Chapter 17 Investment Analysis
Other Analysis Techniques
Chapter 7 - Rate of Return Analysis Click here for Streaming Audio To Accompany Presentation (optional) Click here for Streaming Audio To Accompany Presentation.
Investment Analysis Lecture: 9 Course Code: MBF702.
Chapter – 5 & 6: NPV & Other Investment Rules, Cash flows
Ch 6 Project Analysis Under Certainty
CAPITAL BUDGETING AND CAPITAL BUDGETING TECHNIQUES FOR ENTERPRISE Chapter 5.
Dealing With Uncertainty
Economic Concepts Related to Appraisals. Time Value of Money The basic idea is that a dollar today is worth more than a dollar tomorrow Why? – Consumption.
©The McGraw-Hill Companies, Inc. 2006McGraw-Hill/Irwin Chapter Ten Planning for Capital Investments.
FINAL EXAM REVIEW Spring Nominal and Effective Interest Rates Payment Period  Compounding Period Mortgages and Car Loans MARR and WACC Present.
AEC 422 Fall 2014 Unit 2 Financial Decision Making.
4 C H A P T E R Capital Investment Decisions.
Chapter 3 – Opportunity Cost of Capital and Capital Budgeting
Naval Postgraduate School Time Value of Money Discounted Cash Flow Techniques Source: Raymond P. Lutz, “Discounted Cash Flow Techniques,” Handbook of Industrial.
Managerial Finance Net Present Value (NPV) Week 5.
ALI SALMAN1 LECTURE - 11 ASST PROF. ENGR ALI SALMAN ceme.nust.edu.pk DEPARTMENT OF ENGINEERING MANAGEMENT COLLEGE OF E & ME, NUST DEPARTMENT.
Capital Budgeting and Investment Analysis
Chapter 7 Rate of Return Analysis
ACCTG101 Revision MODULES 10 & 11 TIME VALUE OF MONEY & CAPITAL INVESTMENT.
Chapter 7 Fundamentals of Capital Budgeting. 7-2 Chapter Outline 7.1 Forecasting Earnings 7.2 Determining Free Cash Flow and NPV 7.3 Analyzing the Project.
Engineering Economic Analysis Canadian Edition Chapter 9: Other Analysis Techniques.
Long-Term (Capital Investment) Decisions
©2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
$$ Entrepreneurial Finance, 5th Edition Adelman and Marks 10-1 Pearson Higher Education ©2010 by Pearson Education, Inc. Upper Saddle River, NJ Capital.
Capital Budgeting The Capital Budgeting Decision Time Value of Money Methods of Capital Project Evaluation Cash Flows Capital Rationing The Value of a.
Chapter 6 Investment Decision Rules
0 CHAPTER 10 Long-Term (Capital Investment) Decisions © 2009 Cengage Learning.
Evaluating a Single Project
MIE Class #5 Manufacturing & Engineering Economics Concerns and Questions Concerns and Questions Quick Recap of Previous ClassQuick Recap of Previous.
CHAPTER 10 DEALING WITH UNCERTAINTY. RISK Risk and uncertainty are similar in that they both present the problem of not knowing what future conditions.
$$ Entrepreneurial Finance, 4th Edition By Adelman and Marks PRENTICE HALL ©2007 by Pearson Education, Inc. Upper Saddle River, NJ Capital Budgeting.
Chapter 8 Long-Term (Capital Investment) Decisions.
McGraw-Hill/Irwin © 2008 The McGraw-Hill Companies, Inc., All Rights Reserved. 1-1 McGraw-Hill/Irwin © 2008 The McGraw-Hill Companies, Inc., All Rights.
1 Capital Budgeting. 2 n Capital Budgeting is a process used to evaluate investments in long-term or Capital Assets. n Capital Assets n have useful lives.
AGEC 407 Investment Analysis Time value of money –$1 received today is worth more than $1 received in the future Why? –Earning potential –Risk –Inflation.
Chapter 8 Capital Asset Selection and Capital Budgeting.
20-1 HANSEN & MOWEN Cost Management ACCOUNTING AND CONTROL.
Ch 10-1 © 2004 Pearson Education, Inc. Pearson Prentice Hall, Pearson Education, Upper Saddle River, NJ Ostwald and McLaren / Cost Analysis and Estimating.
©2005 Prentice Hall Business Publishing, Introduction to Management Accounting 13/e, Horngren/Sundem/Stratton Capital Budgeting Chapter 11.
Investment Appraisal. A means of assessing whether an investment project is worthwhile or not Investment project could be the purchase of a new PC for.
Needles Powers Crosson Financial and Managerial Accounting 10e Capital Investment Analysis 24 C H A P T E R © human/iStockphoto ©2014 Cengage Learning.
EGGC4214 Systems Engineering & Economy Lecture 6 Rate of Return Analysis 1.
$$ Entrepreneurial Finance, 5th Edition Adelman and Marks PRENTICE HALL ©2010 by Pearson Education, Inc. Upper Saddle River, NJ Capital Budgeting.
PROBLEM SOLVING.
© 2008 The McGraw-Hill Companies, Inc., All Rights Reserved.
Long-Term (Capital Investment) Decisions
Engineering Economic Analysis
Engineering Economic Analysis
Investment Appraisal.
Capital Budgeting Techniques
OUTLINE Questions? News? New homework due Wednesday
OUTLINE Questions? News? New homework due Wednesday
Presentation transcript:

ENGM 401 & 620 –X1 Fundamentals of Engineering Finance Fall 2010 Lecture 26: Other Analysis Techniques If you work just for money, you'll never make it, but if you love what you're doing and you always put the customer first, success will be yours. - Ray Kroc M.G. Lipsett Department of Mechanical Engineering University of Alberta

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques An Interesting News Item On Nov. 7/09, The Edmonton Journal reported that Peter Pocklington owes $884 daily on a $13,000,000 provincial loan. What interest rate is the government charging? (this works out to % as the daily interest rate) a)2.48% b) 2.50% c) 2.51% d) 2.68% e) 6.80%

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Choosing a Rate of Return i (Review) Many broad factors affect choice of rate of return i For many projects or investments, companies identify a “hurdle rate” such as –minimum acceptable rate of return –minimum acceptable rate of return (MARR), which is the lowest return the company is willing to earn on an investment –weighted average cost of capital –weighted average cost of capital (WACC), which is the cost of the company’s mix of financing (so an investment that doesn’t give at least this rate of return for no effective risk is not worthwhile for the company) Internal Rate of ReturnInternal Rate of Return (IRR) is the effective interest rate at which the NPV of an investment’s cash flows (including both benefits and costs) is zero Spreadsheets have software tools such as “goal seek” or “Solver” to solve for the IRR (interest rate at which NPV = 0)

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Incremental Investment Analysis (Review) We have used NPV to evaluate an investment opportunity compared against an hurdle rate for interest (MARR, WACC, etc.) IRR tells us when the investment benefits match the costs IIRR (also referred to as ΔIRR) tells us whether one alternative has a better incremental return than another

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Other Investment Evaluation Techniques: Benefit-Cost Ratio Analysis Incremental Benefit-Cost Ratio Analysis Payback Analysis Sensitivity Analysis Breakeven Analysis

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Benefit-Cost Ratio Analysis Benefit-Cost Ratio AnalysisBenefit-Cost Ratio Analysis compares the value gained from a project to the cost of the project –We expect the benefits to outweigh the costs (i.e., the total value of the benefits should be greater than the total value of the costs) benefit-cost ratioThe idea is that a project with a large benefit-cost ratio (BCR) will be a good project (but bigger isn’t always better) Often, BCR is given as ratio of equivalent uniform annual benefits (EUAB) versus equivalent uniform annual cost (EUAC). Benefit-cost ratio analysis is frequently used for analyzing public sector projects –and can include costs or benefits that may not necessarily be considered if it was a private investment Can consider lots of other factors, including qualitative benefits/costs, etc. For example, could have environmental impacts, far-reaching economic effects, etc.

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Incremental Benefit-Cost Ratio Example Incremental BCR is used to select between options. You can select between the Baseline model or the Gold Standard model for a new piece of equipment your company needs. The equivalent uniform annual costs and benefits of each are: –Baseline model: EUAC = $50k, EUAB = $75k –Gold Standard model: EUAC = $125k, EUAB = $140k Which model should you choose?

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Incremental Benefit-Cost Ratio Example Incremental BCR is used to select between options. You can select between the Baseline model or the Gold Standard model for a new piece of equipment your company needs. The equivalent uniform annual costs and benefits of each are: –Baseline model: EUAC = $50k, EUAB = $75k –Gold Standard model: EUAC = $125k, EUAB = $140k BCR base = 75 / 50 = 1.25 ; BCR gold_standard = 140 / 125 = 1.12 Which model should you choose? Since the BCR of each is greater than one, we do an incremental BCR

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Incremental Benefit-Cost Ratio Example Incremental BCR is used to select between options. You can select between the Baseline model or the Gold Standard model for a new piece of equipment your company needs. The equivalent uniform annual costs and benefits of each are: –Baseline model: EUAC = $50k, EUAB = $75k –Gold Standard model: EUAC = $125k, EUAB = $140k BCR base = 75 / 50 = 1.25 ; BCR gold_standard = 140 / 125 = 1.12 Which model should you choose? –Since the BCR of each is greater than one, then each is individually acceptable, so calculate the incremental BCR (using cheaper cost option as the basis for comparison: ΔBCR = 140 – 75 < Since the ∆BCR is less than one, it means that the incremental BCR of choosing the more expensive option over the less expensive option is below the threshold to make it a good option.

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Benefit-Cost Ratio In-Class Problem #1 You can consider two types of equipment for your company, each with different costs, net annual benefits, salvage values, and useful lives: #1 #2 Purchase cost$ 200k$ 700k Annual benefit$ 95k$ 120k Salvage value $ 50k$ 150k Useful life 6 years12 years Assuming a 10% interest rate, what are their benefit-cost ratios? Which would you choose? Why?

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Benefit-Cost Ratio In-Class Problem #1 (2) Use equivalent annual costs and benefits to calculate BCRs = = =

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Benefit-Cost Ratio In-Class Problem #1 (2) Use equivalent annual costs and benefits to calculate BCRs #1# = = = EUAC 2 = 700(A|P,10%,12)-150(A|F,10%,12) = 96 EUAB 2 = 120 (given) EUAB 2 = 120 = 1.25 EUAC 2 96 EUAC 1 = 200(A|P,10%,6)-50(A|F,10%,6) = 40 EUAB 1 = 95 (given) EUAB 1 = 95 = 2.41 EUAC 1 40

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Benefit-Cost Ratio In-Class Problem #1 (2) Use equivalent annual costs and benefits to calculate BCRs #1# = = = EUAC 2 = 700(A|P,10%,12)-150(A|F,10%,12) = 96 EUAB 2 = 120 (given) EUAB 2 = 120 = 1.25 EUAC 2 96 EUAC 1 = 200(A|P,10%,6)-50(A|F,10%,6) = 40 EUAB 1 = 95 (given) EUAB 1 = 95 = 2.41 EUAC 1 40 ΔEUAB = EUAB 2 - EUAB 1 = 25 = 0.45 < 1 ΔEUAC EUAC 2 - EUAC 1 56 Therefore choose lower cost option #1

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Benefit-Cost Ratio Analysis, Multiple Options When comparing more than one alternative project, we don’t necessarily want to choose the one with the largest BCR –For reasons similar to those for not automatically selecting the project with the largest IRR The method is to calculate incremental costs (∆C) and incremental benefits (∆B) for each progressively more expensive pair, which will allow us to calculate incremental benefit-cost ratios (∆BCR) for those pairs –If ∆BCR ≥ 1, then the more expensive project is worthwhile –This is because the incremental benefit is worth more than the incremental cost above the less expensive option

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Benefit-Cost Ratio In-Class Problem #2 Consider that you can choose one of six alternatives, each with the same useful life and with no salvage value: A B C D E F PW cost $4000$2000$6000$1000$9000$10000 PW benefit $7330$4700$8730$1340$9000 $9500 BCR Question:Question: Which alternative should you select? –Note: We don’t need to know i in this case because we’re given the PW of all of our cash flows. But if all we had were the actual cash flows, we’d need to calculate the PW cost and PW benefit ourselves, so we’d need to know i

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Benefit-Cost Ratio In-Class Problem #2 (2)

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Benefit-Cost Ratio In-Class Problem #2 (2)

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Benefit-Cost Ratio In-Class Problem #2 (2)

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Benefit-Cost Ratio In-Class Problem #2 (2)

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Benefit-Cost Ratio In-Class Problem #2 (2)

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Benefit-Cost Ratio In-Class Problem #2 (2)

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Payback Period Payback period is the amount of time that elapses before the net benefits of an investment equal its cost –For projects with high uncertainty, payback period becomes very important (why?) faster recovery of initial costs reduces risk Two main types of payback period analysis – simple: using FV series (no discounting) – discounted, using PV series (with MARR, etc.), often called the breakeven point There are other versions of payback: –can consider depreciation, inflation, taxes, etc. In projects, payback period is usually calculated from the time of start-up, not the time of the beginning of the project doesn’t consider timing of cash flows before or after the payback period

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Payback Period Example Payback of 6 years (actually 5.24 years) In this case, there is value created in the first year, so we start the clock in year 1. In simple payback, we use future values directly (not discounted values)

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Payback Period Example Payback of 4 years (actually 3.71 years) Payback of 6 years (actually 5.24 years)

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Payback Period Example Payback of 4 years (actually 3.71 years) In discounted payback, we use present values

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Payback Period Example Payback of 4 years (actually 3.71 years) Payback of 6 years (actually 5.24 years)

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Sensitivity and Break-Even Analysis Sensitivity and break-even analysisSensitivity and break-even analysis determines which value of a particular parameter will result in a break-even scenario (and to which parameters a decision is sensitive) At break-even, costs equal revenues, NPV equals zero, two options are equivalent, etc. At this point the decision can go either way Example uses: –What cost do we set for a particular project so that it is equivalent to another project? –What timing should be used to build a multi-phase project? –How will the useful life of a piece of equipment impact a decision? Sensitivity concerns how much a parameter can change before it would affect a decision

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Sensitivity and Break-Even Analysis Example Your company needs to build a new plant. –Option A is to build all at once: The plant has the capacity you will need years from now, at a cost of $140k. –Option B is to build in two phases: Phase 1 provides the capacity you need for the first few years at a cost of $100k. Phase 2 provides the remaining additional capacity at a cost of $120k. –Both options have the same total useful lifetime, the same operation and maintenance costs, and no salvage value. With a WACC of 8%, at what time will the cost of both options be equivalent? –What does this mean? –At the time of equivalence the decision could be made for either option

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Sensitivity and Break-Even Analysis Example (2) both options are equivalent here (between 14 & 15 years out) Option B Option A The decision of which option to use is only sensitive to the timing if the range of estimates is in the area of 15 years. WACC = 8% This plot shows the effect on net present cost of option B phase 2 ($120k using discounted dollars), thus cheaper as phase 2 gets delayed

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Sensitivity and Break-Even Analysis Example (3) with i = 10%, options are equivalent here (11.4 years) Option B Option A The decision will also depend on our WACC, or the interest rate we use to calculate our discounted cash flows. If money is more costly, then Option B becomes preferable at an earlier point (discounted faster).

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Sensitivity and Break-Even Analysis Example (4) with i = 6%, options are equivalent here (19 years) Option B Option A If money is les costly, then Option B becomes preferable at an later point (not discounting as much).

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Break-Even – In-Class Problem #1 Choosing between two options: –Option A has a cost known to be $5000, with an net annual benefit of $700 –Option B has an unknown cost, but it will provide an net annual benefit of $639 –Both options have a 20-year useful life with no salvage value With a WACC of 6%, which option should we choose?

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Break-Even – In-Class Problem #1 Choosing between two options: –Option A has a cost known to be $5000, with an net annual benefit of $700 –Option B has an unknown cost, but it will provide an net annual benefit of $639 –Both options have a 20-year useful life with no salvage value With a WACC of 6%, which option should we choose? Solve by writing expressions that are equivalent for the two options And then solve for the unknown (unknown cost of B): Option A Option B NPV A = PWb – PWc NPV B = PWb –PWc Solve for the cost of B with the same NPV as for Option A

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Break-Even – In-Class Problem #1 Choosing between two options: –Option A has a cost known to be $5000, with an net annual benefit of $700 –Option B has an unknown cost, but it will provide an net annual benefit of $639 –Both options have a 20-year useful life with no salvage value With a WACC of 6%, which option should we choose? Solve by writing expressions that are equivalent for the two options And then solve for the unknown (unknown cost of B): Option A Option B NPV A = PWb – PWc NPV B = PWb –PWc = 700(P|A,6%,20) – 5000 = 639(P|A,6%,20) – PWc = 700(11.470) – 5000 = 7329 – PWc = $3029 Solve for the cost of B with the same NPV as for Option A NPVA = NPVB 3029 = 7329 – PWc => PWc = $4300 Therefore, choose Option B if present cost < $4300

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Break-Even – In-Class Problem #2 You need to replace a component in a piece of equipment used in an environment that is highly susceptible to corrosion. An ordinary part has a cost of $350, a useful life of only 6 years, and no salvage value. How long a useful life must a more expensive ($500) corrosion resistant part have if it is preferred over the ordinary part? Assume WACC= 10%

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Break-Even – In-Class Problem #2 You need to replace a component in a piece of equipment used in an environment that is highly susceptible to corrosion. An ordinary part has a cost of $350, a useful life of only 6 years, and no salvage value. How long a useful life must a more expensive ($500) corrosion resistant part have if it is preferred over the ordinary part? Assume WACC= 10% Let’s find the breakeven life for the corrosion resistant part, using equivalent uniform annual costs. The annual cost of the untreated part: $350 × (A/P, 10%, 6) = $350 × (0.2296) = $80.36 The annual cost of the treated part must be at least this low, for breakeven

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Break-Even – In-Class Problem #2 You need to replace a component in a piece of equipment used in an environment that is highly susceptible to corrosion. An ordinary part has a cost of $350, a useful life of only 6 years, and no salvage value. How long a useful life must a more expensive ($500) corrosion resistant part have if it is preferred over the ordinary part? Assume WACC= 10% Let’s find the breakeven life for the corrosion resistant part, using equivalent uniform annual costs. The annual cost of the untreated part: $350 × (A/P, 10%, 6) = $350 × (0.2296) = $80.36 The annual cost of the treated part must be at least this low so, for breakeven, we use the annual cost of the other option to solve for the time period: $80.36 = $500 × (A/P, 10%, n) (A/P, 10%, n) = $80.36/$500 = If we look this value up in the Capital Recovery Factor table, we don’t see this exact value, but we can interpolate within the tables and solve for n

© MG Lipsett, Department of Mechanical Engineering Engineering Management Group ENGM 401 & 620 – Fundamentals of Engineering Finance, Lecture 26: Other Analysis Techniques Break-Even – In-Class Problem #2 You need to replace a component in a piece of equipment used in an environment that is highly susceptible to corrosion. An ordinary part has a cost of $350, a useful life of only 6 years, and no salvage value. How long a useful life must a more expensive ($500) corrosion resistant part have if it is preferred over the ordinary part? Assume WACC= 10% Let’s find the breakeven life for the corrosion resistant part, using equivalent uniform annual costs. The annual cost of the untreated part: $350 × (A/P, 10%, 6) = $350 × (0.2296) = $80.36 The annual cost of the treated part must be at least this low so, for breakeven, we use the annual cost of the other option to solve for the time period: $80.36 = $500 × (A/P, 10%, n) (A/P, 10%, n) = $80.36/$500 = If we look this value up in the Capital Recovery Factor table, we don’t see this exact value, but we can interpolate within the tables and solve for n to be just over 10 years.: A/P, 10%, 10 A/P, 10%, 11 A/P, 10%, n