III. Multicore Processors (6) Dezső Sima Spring 2007 (Ver. 2.1)  Dezső Sima, 2007.

Slides:



Advertisements
Similar presentations
CS 7810 Lecture 22 Processor Case Studies, The Microarchitecture of the Pentium 4 Processor G. Hinton et al. Intel Technology Journal Q1, 2001.
Advertisements

EZ-COURSEWARE State-of-the-Art Teaching Tools From AMS Teaching Tomorrow’s Technology Today.
III. Multicore Processors (5) Dezső Sima Spring 2007 (Ver. 2.1)  Dezső Sima, 2007.
4. Shared Memory Parallel Architectures 4.4. Multicore Architectures
Slides Prepared from the CI-Tutor Courses at NCSA By S. Masoud Sadjadi School of Computing and Information Sciences Florida.
ARM Cortex-A9 MPCore ™ processor Presented by- Chris Cai (xiaocai2) Rehana Tabassum (tabassu2) Sam Mussmann (mussmnn2)
III. Multicore Processors (4) Dezső Sima Spring 2007 (Ver. 2.1)  Dezső Sima, 2007.
MULTICORE PROCESSOR TECHNOLOGY.  Introduction  history  Why multi-core ?  What do you mean by multicore?  Multi core architecture  Comparison of.
Introduction to Microprocessors and Microcomputers.
Chapter 1 An Introduction To Microprocessor And Computer
Microprocessor Microarchitecture Multithreading Lynn Choi School of Electrical Engineering.
III. Multicore Processors (5) Dezső Sima Spring 2007 (Ver. 2.0)  Dezső Sima, 2007.
Adam Kunk Anil John Pete Bohman.  Released by IBM in 2010 (~ February)  Successor of the POWER6  Implements IBM PowerPC architecture v2.06  Clock.
OPTERON (Advanced Micro Devices). History of the Opteron AMD's server & workstation processor line 2003: Original Opteron released o 32 & 64 bit processing.
1 Microprocessor-based Systems Course 4 - Microprocessors.
CS 7810 Lecture 23 Maximizing CMP Throughput with Mediocre Cores J. Davis, J. Laudon, K. Olukotun Proceedings of PACT-14 September 2005.
Sun’s UltraSparc processors Sparc Version 9 architecture.
1 Lecture 26: Case Studies Topics: processor case studies, Flash memory Final exam stats:  Highest 83, median 67  70+: 16 students, 60-69: 20 students.
Adam Kunk Anil John Pete Bohman.  Released by IBM in 2010 (~ February)  Successor of the POWER6  Shift from high frequency to multi-core  Implements.
7-Aug-15 (1) CSC Computer Organization Lecture 6: A Historical Perspective of Pentium IA-32.
Computer Organization and Assembly language
Lect 13-1 Lect 13: and Pentium. Lect Microprocessor Family  Microprocessor  Introduced in 1989  High Integration  On-chip 8K.
K10 based AMD processors Dezső Sima Fall 2007 (Ver. 2.1)  Dezső Sima, 2007.
Multi-core Processing The Past and The Future Amir Moghimi, ASIC Course, UT ECE.
III. Multicore Processors (3)
Microarchitecture of Superscalars (4) Decoding Dezső Sima Fall 2007 (Ver. 2.0)  Dezső Sima, 2007.
Microarchitecture of Superscalars (5) Dynamic Instruction Issue Dezső Sima Fall 2007 (Ver. 2.0)  Dezső Sima, 2007.
Computer Architecture Introduction Lynn Choi Korea University.
Crossbar switches By Alejandro Ayala. Hardware design Show hardware design of several modern crossbar switches used for multiprocessing system on chip.
Company LOGO High Performance Processors Miguel J. González Blanco Miguel A. Padilla Puig Felix Rivera Rivas.
Introduction to CMOS VLSI Design Lecture 22: Case Study: Intel Processors David Harris Harvey Mudd College Spring 2004.
12. Multithreaded Processors Dezső Sima Fall 2006  D. Sima, 2006.
Intel’s Penryn Sima Dezső Fall 2007 Version nm quad-core -
Niagara: a 32-Way Multithreaded SPARC Processor
Dezső Sima Fall 2007 (Ver. 2.1)  Dezső Sima, 2007 Multicore Processors (2)
Workstations CPU David Josué Morales José Luis Micheri Marie Muñoz The Dinosaurs Electrical and Computer Engineering Department August 25, 2004.
CS5222 Adv. Comp. Arch. Part 0 Page.1 Chi C.H. Fall 2003 NUS CS5222 Advanced Computer Architecture Part 0: Course Introduction Fall Term, 2003/2004 Chi.
MULTICORE PROCESSOR TECHNOLOGY.  Introduction  history  Why multi-core ?  What do you mean by multicore?  Multi core architecture  Comparison of.
Computer Architecture Introduction Lynn Choi Korea University.
Microprocessor Microarchitecture Introduction Lynn Choi School of Electrical Engineering.
CS5222 Adv. Comp. Arch. Part 0 Page.1 Chi C.H. Fall 2004 NUS CS5222 Advanced Computer Architecture Part 0: Course Introduction Fall Term, 2004/2005 Chi.
Adam Kunk Anil John Pete Bohman.  Released by IBM in 2010 (~ February)  Successor of the Power6  Clock Rate: 2.4 GHz GHz  Feature size: 45.
CSC 7080 Graduate Computer Architecture Lec 8 – Multiprocessors & Thread- Level Parallelism (3) – Sun T1 Dr. Khalaf Notes adapted from: David Patterson.
Hewlett-Packard PA-RISC Bit Processors: History, Features, and Architecture Presented By: Adam Gray Christie Kummers Joshua Madagan.
Dezső Sima Fall 2007 (Ver. 2.1)  Dezső Sima, 2007 Multicore Processors (5)
Sima Dezső Introduction to multicores October Version 1.0.
The Pentium Series CS 585: Computer Architecture Summer 2002 Tim Barto.
UltraSparc IV Tolga TOLGAY. OUTLINE Introduction History What is new? Chip Multitreading Pipeline Cache Branch Prediction Conclusion Introduction History.
Niagara: A 32-Way Multithreaded Sparc Processor Kongetira, Aingaran, Olukotun Presentation by: Mohamed Abuobaida Mohamed For COE502 : Parallel Processing.
Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (3)
Microarchitecture of Superscalars (6) Register renaming Dezső Sima Spring 2008 (Ver. 2.0)  Dezső Sima, 2008.
Roza Ghamari CMPE 511 Niagara & Niagara 2. Outline Introduction Niagara Specifications Niagara 2 Specifications Comparison Conclusion References.
SPRING 2012 Assembly Language. Definition 2 A microprocessor is a silicon chip which forms the core of a microcomputer the concept of what goes into a.
William Stallings Computer Organization and Architecture 8th Edition
Itanium® 2 Processor Architecture
Manycore processors Sima Dezső October Version 6.2.
Microprocessor Microarchitecture Introduction
Lynn Choi School of Electrical Engineering
Lynn Choi School of Electrical Engineering
Multi-Core Computing Osama Awwad Department of Computer Science
Parallel Computers Today
III. Multicore Processors (2)
11. Multicore Processors Dezső Sima Fall 2006  D. Sima, 2006.
Többmagos Processzorok (2)
Multicore Processors (5)
Microarchitecture of Superscalars (4) Decoding
Multicore Processors (1)
William Stallings Computer Organization and Architecture 8th Edition
William Stallings Computer Organization and Architecture 8th Edition
Presentation transcript:

III. Multicore Processors (6) Dezső Sima Spring 2007 (Ver. 2.1)  Dezső Sima, 2007

Gemini UltraSPARC IV line UltraSPARC T line Sun’s MC processors

Figure: Overview of Sun’s major processor families [4.1] Multi-core processors 10.4 Evolution of Sun’s processor lines

Gemini (cancelled)130 nm 4/ Gemini 10.4 Sun’s MC processors

Figure: Block diagram and die shot of the Gemini [4.1] Gemini (1)

Figure: Main features of the Gemini processor [4.1] Gemini (2)

Gemini (34) Table: Main features of Sun’s Gemini On-dieMem. Contr. 2*512 KB/privateSize/allocation L3 L2 Size 959 pin  PGA 32 On-die 1.0/ mtrs. 206 mm nm Cancelled 4/2004 2* UltraSPARC II DC Gemini Multithreading Socket TDP [W] Implementation f c [GHz] Nr. of transistors Die size Technology Introduction Cores Dual/Quad-Core Model

UltraSPARC IV Jaguar3/ nm UltraSPARC IV line 10.4 Sun’s MC processors UltraSPARC IV+ Panther9/ nm

Figure : UltraSPARC IV (Jaguar) [4.2] ARB: Arbiter UltraSPARC IV (1)

Figure: Floor plan of the UltraSPARC IV [4.3] UltraSPARC IV (2)

UltraSPARC IV (3) Table: Main features of Sun’s UltraSPARC IV processor On-die Mem. Contr. 2*8 MB/private2*512 KB/privateSize/allocation L3 L2 16 MB/sharedSize 959 pin  PGA 32 On-die 1.0/ mtrs. 206 mm nm Cancelled 4/2004 2* UltraSPARC II DC Gemini 1368 pin LGA 108 Off-die, L2 tags on-die 1.050/1.200/ mtrs. 352 mm nm 7/2004 2*UltraSPARC III DC UltraSPARC IV (Jaguar) Multithreading Socket TDP [W] Implementation f c [GHz] Nr. of transistors Die size Technology Introduction Cores Dual/Quad-Core Model

Figure: UltraSPARC IV+ (Panther) [4.2] UltraSPARC IV+ (1)

Figure: Die shot and floor plan of the UltraSPARCIV+ [4.7] 19.7 x 17.0 mm UltraSPARC IV+ (2) UltraSPARC IV+

Figure: Contrasting the floor plans of the UltraSPARC IV and UltraSPARC IV+ dies [4.3], [4.7] UltraSPARC IV UltraSPARC IV+ 130 nm/356 mm 2 /66 mtrs 90 nm/335 mm 2 /295 mtrs UltraSPARC IV+ (3)

Figure: Schmoo plot of the UltraSPARCIV+ [4.7] UltraSPARC IV+ (4)

UltraSPARC IV+ (5) Table: Main features of Sun’s IV+ processor On-die Mem. Contr. 2 MB/shared2*8 MB/private2*512 KB/privateSize/allocation L3 L2 32 MB/shared16 MB/sharedSize 959 pin  PGA 32 On-die 1.0/ mtrs. 206 mm nm Cancelled 4/2004 2* UltraSPARC II DC Gemini 1368 pin LGA 108 Off-die, L2 tags on-die 1.050/1.200/ mtrs. 352 mm nm 7/2004 2*UltraSPARC III DC UltraSPARC IV (Jaguar) Multithreading 1368 pin LGASocket 90TDP [W] L3 tags on-die, L3 exclusive of L2 Implementation On-dieImplementation 1.5/1.8f c [GHz] 295 mtrs.Nr. of transistors 335 mm 2 Die size 90 nmTechnology 9/2005Introduction 2*UltraSPARC IIICores DCDual/Quad-Core UltraSPARC IV+ (Panther) Model

UltraSPARC T line 10.4 Sun’s MC processors UltraSPARC T1 Niagara11/ nm UltraSPARC T2 Niagara nm

Figure: Block diagram of the UltraSPARC T1 (Niagara) [4.10] UltraSPARC T1 (1)

Figure: Pipeline stages of the Niagara cores (scalar FX cores) [4.10] UltraSPARC T1 (2)

Figure: Die shot of Niagara [4.10] UltraSPARC T1 (3)

Figure: Floor plan and main features of Niagara [4.10] UltraSPARC T1 (4)

UltraSPARC T1 (5) Table: Main features of Sun’s UltraSPARC T1 processor L3 UltraSPARC T1Series JBus (3.2 GB/s)I/O-bus 4-channels, on-die, 400 MT/sMemory controller Bandwidth: >200 GB/sInterconnection NW MonolithicImpl. or the cores SPARC V9Architecture 25.6 GB/sMemory bandwidth 3 MB/sharedSize/allocation L2 4-way/core 63 On-die mtrs. 379 mm 2 90 nm 11/2005 Scalar integer FX cores 8 cores UltraSPARC T1 Multithreading TDP [W] Implementation f c [GHz] Nr. of transistors Die size Technology Introduction Cores Nr. of cores Models

Figure: Block diagram of UltraSPARC 2 (Niagara-2) [4.12] UltraSPARC T2 (1)

Figure: block diagram of the cores in Niagara 2 [4.12] UltraSPARC T2 (2)

Figure: The full crossbar swith of Niagara 2 [4.12] UltraSPARC T2 (3)

Main features and floor plan of the Niagara-2 [4.12] UltraSPARC T2 (4)

Figure: Floor plan of the Niagara-2 [4.13] UltraSPARC T2 (5)

Figure: Comparison of the block diagrams of Niagara-1 and -2 [4.14] UltraSPARC T2 (6)

UltraSPARC T2 (7) Table: Main features of Sun’s UltraSPARC T2 processor L3 UltraSPARC T1/T2Series JBus (3.2 GB/s) I/O-bus 4-channels, on-die, 400 MT/s Memory controller Full 8*9 crossbar switchBandwidth: >200 GB/sInterconnection NW Monolithic Impl. or the cores SPARC V9 Architecture 42.7 GB/s25.6 GB/sMemory bandwidth 4 MB/shared3 MB/sharedSize/allocation L2 4-way/core 63 On-die mtrs. 379 mm 2 90 nm 11/2005 Scalar integer FX cores 8 cores UltraSPARC T1 8-way/coreMultithreading 72 (est.)TDP [W] On-dieImplementation 1.4f c [GHz] n.a.Nr. of transistors 342 mm 2 Die size 65 nmTechnology 2007Introduction Dual-issue FX/FP coresCores 8 coresNr. of cores UltraSPARC T2Models

10.4 Literature (1) UltraSPARC IV [4.1] Kapil S., „Gemini,” 2003, [4.6] Boussard C., „Architecture des processeurs,” [4.3] Krewell K., „UltraSPARCIV Mirrors Predecessor, MPR, Nov. 10, 2003, [4.7] Dixit A. et al., „Implementation and Productization of a 4th Generation 1.8 GHz Dual-Core SPARC V9 Microprocessor, Febr. 2006, Gemini UltraSPARC IV+ [4.2] Boussard C., „Architecture des processeurs,” [4.8] - „UltraSPARC IV+ Processor User’s Manual Supplement,” Ver. 1.0, Sun Microsystems, Oct. 2005, [4.4] - „UltraSPARC IV Processor User’s Manual Supplement,” Ver. 1.0, Sun Microsystems, Apr. 2004, [4.5] - UltraSPARC IV Processor Architecture Overview, Technical Whitepaper, Febr. 2004,

UltraSPARC T1 UltraSPARC T2 [4.10] Laudon J., „UltraSPARC T1: A 32-threaded CMP for Servers, 2006, [4.12] Golla R., „Niagara2: A Highly Threaded Server-on-a-Chip,” Oct. 2006, [4.13] Grohoski G., „Niagara-2,” Aug. 2006, [4.14] Kanter D.” Niagara II, The Hydra Returns,” Literature (2) [4.15] McGhan H., „Niagara 2 Opens The Floodgates,” Microprocessor Report, Nov. 6, 2006, pp. 1-9 [4.9] Kongetira P., Aingaran K., Olukoton K., „Niagara: A 32-way Multithreaded SPARC Processor,” IEEE Micro, March-April 2005, pp [4.11] - „UltraSPARC T1 Supplement to the UltraSPARC architecture 2005, Draft D2.0, March 2006,

SPARC64 VI SPARC64 VII Fujitsu’s MC processors

SPARC64 VIOlympus90 nm 2007 SPARC64 VII Jupiter65 nm 2008 Dual-core SPARC64 line 10.5 Fujitsu’s MC processors

Reservation Stations (E: FX, F: FP, A: Adress, BR: Branch, FP/SP: L/S) Execution Units (EX: FX, FL: PA, AGEN: Adr. Gen.) 10.5 SPARC64 VI Figure: Block diagram of the SPARC64 VI [5.1]

10.5 SPARC64 VII (1) Figure: Block diagram of the SPARC64 VII [5.1]

10.5 SPARC64 VI/VII (2) Table: Main features of Fujitiu’s multi-core processors (superscalar RISC’s) L3 Jupiter Bus FSB [MT/s] 6 MB/shared Size/allocation L2 2-way 120 On-die mtrs. 421 mm 2 90 nm *SPARC64V (enhanced) SPARC64 VI (Olympus) SPARC64 2-wayMultithreading ~ 120TDP [W] On-dieImplementation ~ 2.7f c [GHz] n.ANr. of transistors 464 mm 2 Die size 65 nmTechnology 2008Introduction 4*SPARC64 VI (enhanced)Cores SPARC64 VII (Jupiter) Models Series

10.5 Literature Sparc64 line [5.1] Inouo A., „Fujitsu SPARC64 VI,” Fall Microprocessor Forum, Oct. 2006, Fujitsu Ltd., [5.3] Krewell K., „SPARC’s Still Going Strong,” Microprocessor Report, Nov. 14, 2005, pp. 1-3 [5.2] Krewell K., „Fujitsu Makes SPARC See Double,” Microprocessor Report, Nov. 24, 2003, pp. 1-3 [5.4] Maruyama T., „SPARC64 VI/VI+ Next Generation processor,” MPF, Oct. 2005,

PA-8800 PA HP’s MC processors

PA-8800Mako130 nm 2/2004 PA-8900 Shortfin130 nm 5/2005 Dual-core PA-8xxx processors (PA 8700-based) 10.6 HP’s dual-core processors

Source: E&M Computing, Figure: The underlaying PA-8700 core 10.6 PA-8800 (1)

Further source: Lostcircuits, Oct. 2001, Figure: Block diagram of the PA-8800 [6.2] 10.6 PA-8800 (2)

Figure: Floorplan of the Mako [6.2] 10.6 PA-8800 (3)

Figure: Contrasting the Floorplans of the PA-8700 and PA-8800 processors [6.2] Further source: E&M Computing, PA-8800 (4)

10.6 PA-8900 (1) Table: Main features of HP’s PA-8800 and PA-8900 processors PA-RISC 2.0 Achitecture 400 MT/s (16 B) FSB Monolithic Impl. of the cores Off-die Mem. Contr. 64 MB/shared32 MB/sharedSize/allocation L2 55 Tags on-chip, data off-chip 0.8/ mtrs. 366 mm nm 2/2004 2* PA-8700 DC PA-8800 (Mako) n.a. Tags on-chip, data off-chip mtrs. 366 mm nm 5/2004 2*PA-8700 DC PA-8900 (Shortfin) TDP [W] Implementation f c [GHz] Nr. of transistors Die size Technology Introduction Cores Dual/Quad-Core Models

10.6 Literature [6.1] MS, „HP PA-8800 RISCProcessor,” Lostcircuits, Oct. 2001, PA 8800/8900 [6.2] Johnson D., „HP’s Mako processor”, Oct. 2001, ftp.parisc-linux.org/docs/whitepapers/mako_mpf_2001.pdf [6.3] Weissmann P., „The OpenPA Project,” First Edition, Berlin, 2007,

XLR line (embedded) RMI’ MC processors

XLR 90 nm 5/2005 XLR line (embedded) 10.7 RMI’s MC processors

Cores: 64-bit MIPS64 with XLR enhancements 4-way multithreaded up to 1.5 Gz 32KB L1 I$, 32 KB L1 D$ branch prediction Figure: XLR cores [7.3] Aim: Embedded systems, such as processing cores from packet data transfers, cryptography functions, authentication operations, TCP/IP CRC calculations and network interface data management XLR line (1)

Figure: Architecture of the XLR family [7.4] 10.7 XLR line (2)

Figure: Block diagram of RMI’s XLR family [7.1] 10.7 XLR line (3)

Figure: The Fast Messaging Network (FMN) [7.3] 10.7 XLR line (4)

Figure: The Memory Distributed Interconnect (MDI) providing 484 Gbits/s bandwidth [7.1] 10.7 XLR line (5)

Figure: Floor plan of the XLR die [7.1] 10.7 XLR line (6)

10.7 XLR line (7) Table: Main features of RMI’s XLR lines Three on-die rings: Memory Distributed Interconnect (48 GB/s) Fast Messaging Network (24 GB/s) I/O Distributed Interconnect (61 GB/s) Interconnection networks Two On-die memory controllers, each supporting two 32-bit or one 64-bit memory channel Memory controller L3 XLR 300/XLR 500/XLR 700Series MIPS 64Architecture 2 MB/sharedSize/allocation L2 4-way/cores On-chip mtrs. ~ 220 mm 2 90 nm 5/2005 Scalar FX cores 2/4/8 Multithreading TDP [W] Impl. f c [GHz] Nr. of transistors Die size Technology Introduction Cores Nr. of cores

10.7 Literature XLR series [7.3] - „XLR Processor Product Overview,” Preliminary, May 2005, [7.1] Krewell K., „A New MIPS Powerhouse Arrives,”, Microprocessor Report, 5/17/ [7.2] - Multicore, multithreaded chips ship with Linux,” LinuxDevices, May 2005, [7.4] - „RMI XLR Processor Family Product Brief,” Document # 2001PB, RMI Inc., 2007,