Lecture 9: MIPS Instruction Set

Slides:



Advertisements
Similar presentations
1 Lecture 3: MIPS Instruction Set Today’s topic:  More MIPS instructions  Procedure call/return Reminder: Assignment 1 is on the class web-page (due.
Advertisements

C OMPUTER O RGANIZATION AND D ESIGN The Hardware/Software Interface 5 th Edition Chapter 2 Instructions: Language of the Computer.
Lecture 5: MIPS Instruction Set
Branches Two branch instructions:
The University of Adelaide, School of Computer Science
Lecture 20: 11/12/2002CS170 Fall CS170 Computer Organization and Architecture I Ayman Abdel-Hamid Department of Computer Science Old Dominion University.
Slides revised 3/25/2014 by Patrick Kelley. 2 Procedures Unlike other branching structures (loops, etc.) a Procedure has to return to where it was called.
Exploring Security Vulnerabilities by Exploiting Buffer Overflow using the MIPS ISA Andrew T. Phillips Jack S. E. Tan Department of Computer Science University.
1 Procedure Calls, Linking & Launching Applications Lecture 15 Digital Design and Computer Architecture Harris & Harris Morgan Kaufmann / Elsevier, 2007.
Chapter 2 — Instructions: Language of the Computer — 1 Branching Far Away If branch target is too far to encode with 16-bit offset, assembler rewrites.
ECE 232 L6.Assemb.1 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers ECE 232 Hardware Organization and Design Lecture 6 MIPS Assembly.
Solution 2nd Exam.
10/6: Lecture Topics Procedure call Calling conventions The stack
1 Lecture 4: Procedure Calls Today’s topics:  Procedure calls  Large constants  The compilation process Reminder: Assignment 1 is due on Thursday.
MIPS Calling Convention Chapter 2.7 Appendix A.6.
Lecture 6: MIPS Instruction Set Today’s topic –Control instructions –Procedure call/return 1.
Assembly Code Example Selection Sort.
The University of Adelaide, School of Computer Science
Computer Organization CS224
Computer Architecture CSCE 350
1 Nested Procedures Procedures that don't call others are called leaf procedures, procedures that call others are called nested procedures. Problems may.
CPS3340 COMPUTER ARCHITECTURE Fall Semester, /17/2013 Lecture 12: Procedures Instructor: Ashraf Yaseen DEPARTMENT OF MATH & COMPUTER SCIENCE CENTRAL.
CS1104 – Computer Organization PART 2: Computer Architecture Lecture 4 Assembly Language Programming 2.
Procedures II (1) Fall 2005 Lecture 07: Procedure Calls (Part 2)
The University of Adelaide, School of Computer Science
Apr. 12, 2000Systems Architecture I1 Systems Architecture I (CS ) Lecture 6: Branching and Procedures in MIPS* Jeremy R. Johnson Wed. Apr. 12, 2000.
The University of Adelaide, School of Computer Science
CS3350B Computer Architecture Winter 2015 Lecture 4
Lecture 8: MIPS Instruction Set
MIPS Coding. Exercise – the bubble sort 5/8/2015week04-3.ppt2.
1 Lecture 5: MIPS Examples Today’s topics:  the compilation process  full example – sort in C Reminder: 2 nd assignment will be posted later today.
COMPUTER ARCHITECTURE & OPERATIONS I Instructor: Hao Ji.
1 Lecture 6: Compilers, the SPIM Simulator Today’s topics:  SPIM simulator  The compilation process Additional TA hours: Liqun Cheng, legion at.
Lecture 7: MIPS Instruction Set Today’s topic –Procedure call/return –Large constants Reminders –Homework #2 posted, due 9/17/
Memory/Storage Architecture Lab Computer Architecture MIPS Instruction Set Architecture ( Supporting Procedures )
Adapted from Computer Organization and Design, Patterson & Hennessy, UCB ECE232: Hardware Organization and Design Part 7: MIPS Instructions III
Lecture 19: 11/7/2002CS170 Fall CS170 Computer Organization and Architecture I Ayman Abdel-Hamid Department of Computer Science Old Dominion University.
1 Branches and Procedure Calls Lecture 14 Digital Design and Computer Architecture Harris & Harris Morgan Kaufmann / Elsevier, 2007.
Lecture 4: MIPS Instruction Set
Lecture 10: MIPS Simulator Today’s topic –SPIM Simulator Readings –Appendix B 1.
Computer Architecture CSE 3322 Lecture 4 crystal.uta.edu/~jpatters/cse3322 Assignments due 9/15: 3.7, 3.9, 3.11.
Computer Architecture CSE 3322 Lecture 4 Assignment: 2.4.1, 2.4.4, 2.6.1, , Due 2/10/09
Chapter 2 — Instructions: Language of the Computer — 1 Conditional Operations Branch to a labeled instruction if a condition is true – Otherwise, continue.
1 Lecture 6: Assembly Programs Today’s topics:  Large constants  The compilation process  A full example  Intro to the MARS simulator.
Adapted from Computer Organization and Design, Patterson & Hennessy, UCB ECE232: Hardware Organization and Design Part 8: MIPS Procedures and Recursion.
DR. SIMING LIU SPRING 2016 COMPUTER SCIENCE AND ENGINEERING UNIVERSITY OF NEVADA, RENO Session 14, 15 Addressing Mode.
CPEG323 Homework Review I Long Chen October, 17 th, 2005.
1 Lecture 2: MIPS Instruction Set Today’s topic:  MIPS instructions Reminder: sign up for the mailing list cs3810 Reminder: set up your CADE accounts.
Function Calls in Assembly MIPS R3000 Language (extensive use of stack) Updated 7/11/2013.
Computer Architecture & Operations I
Lecture 5: Procedure Calls
Lecture 6: Assembly Programs
CS2100 Computer Organisation
Lecture 7: MARS, Computer Arithmetic
Procedures 101: There and Back Again
The University of Adelaide, School of Computer Science
Lecture 4: MIPS Instruction Set
Procedures (Functions)
Procedures (Functions)
Pick up the handout on your way in!!
Lecture 4: MIPS Instruction Set
Addressing in Jumps jump j Label go to Label op address 2 address
The University of Adelaide, School of Computer Science
MIPS Functions.
Lecture 7: Examples, MARS, Arithmetic
Lecture 5: Procedure Calls
Chapter 2 Instructions: Language of the Computer part 2
Computer Organization and Design Assembly & Compilation
Lecture 6: Assembly Programs
Computer Architecture
Presentation transcript:

Lecture 9: MIPS Instruction Set Morgan Kaufmann Publishers April 11, 2017 Lecture 9: MIPS Instruction Set Today’s topic Full example SPIM Simulator Chapter 1 — Computer Abstractions and Technology

Full Example – Sort in C void sort (int v[], int n) { int i, j; for (i=0; i<n; i+=1) { for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { swap (v,j); } void swap (int v[], int k) { int temp; temp = v[k]; v[k] = v[k+1]; v[k+1] = temp; } Allocate registers to program variables Produce code for the program body Preserve registers across procedure invocations

The swap Procedure void swap (int v[], int k) { int temp; temp = v[k]; v[k] = v[k+1]; v[k+1] = temp; } Allocate registers to program variables Produce code for the program body Preserve registers across procedure invocations

The University of Adelaide, School of Computer Science 11 April 2017 The Procedure Swap swap: sll $t1, $a1, 2 # $t1 = k * 4 add $t1, $a0, $t1 # $t1 = v+(k*4) # (address of v[k]) lw $t0, 0($t1) # $t0 (temp) = v[k] lw $t2, 4($t1) # $t2 = v[k+1] sw $t2, 0($t1) # v[k] = $t2 (v[k+1]) sw $t0, 4($t1) # v[k+1] = $t0 (temp) jr $ra # return to calling routine Register allocation: $a0 and $a1 for the two arguments, $t0 for the temp variable – no need for saves and restores as we’re not using $s0-$s7 and this is a leaf procedure (won’t need to re-use $a0 and $a1) Chapter 2 — Instructions: Language of the Computer

The sort Procedure Register allocation: arguments v and n use $a0 and $a1, i and j use $s0 and $s1 for (i=0; i<n; i+=1) { for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { swap (v,j); }

The sort Procedure Register allocation: arguments v and n use $a0 and $a1, i and j use $s0 and $s1; must save $a0, $a1, and $ra before calling the leaf procedure The outer for loop looks like this: (note the use of pseudo-instrs) move $s0, $zero # initialize the loop loopbody1: bge $s0, $a1, exit1 # will eventually use slt and beq … body of inner loop … addi $s0, $s0, 1 j loopbody1 exit1: for (i=0; i<n; i+=1) { for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { swap (v,j); }

The sort Procedure The inner for loop looks like this: addi $s1, $s0, -1 # initialize the loop loopbody2: blt $s1, $zero, exit2 # will eventually use slt and beq sll $t1, $s1, 2 add $t2, $a0, $t1 lw $t3, 0($t2) lw $t4, 4($t2) bge $t4, $t3, exit2 … body of inner loop … addi $s1, $s1, -1 j loopbody2 exit2: for (i=0; i<n; i+=1) { for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { swap (v,j); }

The University of Adelaide, School of Computer Science 11 April 2017 The Procedure Body move $s2, $a0 # save $a0 into $s2 move $s3, $a1 # save $a1 into $s3 move $s0, $zero # i = 0 for1tst: slt $t0, $s0, $s3 # $t0 = 0 if $s0 ≥ $s3 (i ≥ n) beq $t0, $zero, exit1 # go to exit1 if $s0 ≥ $s3 (i ≥ n) addi $s1, $s0, –1 # j = i – 1 for2tst: slti $t0, $s1, 0 # $t0 = 1 if $s1 < 0 (j < 0) bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0) sll $t1, $s1, 2 # $t1 = j * 4 add $t2, $s2, $t1 # $t2 = v + (j * 4) lw $t3, 0($t2) # $t3 = v[j] lw $t4, 4($t2) # $t4 = v[j + 1] slt $t0, $t4, $t3 # $t0 = 0 if $t4 ≥ $t3 beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3 move $a0, $s2 # 1st param of swap is v (old $a0) move $a1, $s1 # 2nd param of swap is j jal swap # call swap procedure addi $s1, $s1, –1 # j –= 1 j for2tst # jump to test of inner loop exit2: addi $s0, $s0, 1 # i += 1 j for1tst # jump to test of outer loop Move params Outer loop Inner loop Pass params & call Inner loop Outer loop Chapter 2 — Instructions: Language of the Computer

Saves and Restores Since we repeatedly call “swap” with $a0 and $a1, we begin “sort” by copying its arguments into $s2 and $s3 – must update the rest of the code in “sort” to use $s2 and $s3 instead of $a0 and $a1 Must save $ra at the start of “sort” because it will get over-written when we call “swap” Must also save $s0-$s3 so we don’t overwrite something that belongs to the procedure that called “sort” See page 155 in textbook for complete program code

Saves and Restores sort: addi $sp, $sp, -20 sw $ra, 16($sp) sw $s3, 12($sp) sw $s2, 8($sp) sw $s1, 4($sp) sw $s0, 0($sp) move $s2, $a0 move $s3, $a1 … move $a0, $s2 # the inner loop body starts here move $a1, $s1 jal swap exit1: lw $s0, 0($sp) addi $sp, $sp, 20 jr $ra 9 lines of C code  35 lines of assembly for (i=0; i<n; i+=1) { for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { swap (v,j); }

The University of Adelaide, School of Computer Science 11 April 2017 The Full Procedure sort: addi $sp,$sp, –20 # make room on stack for 5 registers sw $ra, 16($sp) # save $ra on stack sw $s3,12($sp) # save $s3 on stack sw $s2, 8($sp) # save $s2 on stack sw $s1, 4($sp) # save $s1 on stack sw $s0, 0($sp) # save $s0 on stack … # procedure body … exit1: lw $s0, 0($sp) # restore $s0 from stack lw $s1, 4($sp) # restore $s1 from stack lw $s2, 8($sp) # restore $s2 from stack lw $s3,12($sp) # restore $s3 from stack lw $ra,16($sp) # restore $ra from stack addi $sp,$sp, 20 # restore stack pointer jr $ra # return to calling routine Chapter 2 — Instructions: Language of the Computer

Relative Performance Gcc optimization Relative Cycles Instruction CPI performance count none 1.00 159K 115K 1.38 O1 2.37 67K 37K 1.79 O2 2.38 67K 40K 1.66 O3 2.41 66K 45K 1.46 A Java interpreter has relative performance of 0.12, while the Jave just-in-time compiler has relative performance of 2.13 Note that the quicksort algorithm is about three orders of magnitude faster than the bubble sort algorithm (for 100K elements)

SPIM SPIM is a simulator that reads in an assembly program and models its behavior on a MIPS processor Note that a “MIPS add instruction” will eventually be converted to an add instruction for the host computer’s architecture – this translation happens under the hood To simplify the programmer’s task, it accepts pseudo-instructions, large constants, constants in decimal/hex formats, labels, etc. The simulator allows us to inspect register/memory values to confirm that our program is behaving correctly

Example This simple program (similar to what we’ve written in class) will run on SPIM (a “main” label is introduced so SPIM knows where to start) main: addi $t0, $zero, 5 addi $t1, $zero, 7 add $t2, $t0, $t1 If we inspect the contents of $t2, we’ll find the number 12

User Interface hassan@trust > spim (spim) read “add.s” (spim) run (spim) print $10 Reg 10 = 0x0000000c (12) (spim) reinitialize (spim) step (spim) print $8 Reg 8 = 0x00000005 (5) (spim) print $9 Reg 9 = 0x00000000 (0) Reg 9 = 0x00000007 (7) (spim) exit File add.s main: addi $t0, $zero, 5 addi $t1, $zero, 7 add $t2, $t0, $t1