1 The SZE in the SKA & MILLIMETRON Era. The SZE: Physics high-energy photon Internal High-E electrons - thermal (supra-thermal) - relativistic ↑ Use CMB.

Slides:



Advertisements
Similar presentations
October 27, 2006 Monique ARNAUD Atelier du PNC: Cosmologie avec SKA et LOFAR Amas de galaxies Emission non thermique comme traceur de la formation et de.
Advertisements

Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
X-ray Astronomy with High Spectral Resolution: Astro-E2 / ISAS Y. Tanaka.
Planck 2013 results, implications for cosmology
Plasmas in Space: From the Surface of the Sun to the Orbit of the Earth Steven R. Spangler, University of Iowa Division of Plasma Physics, American Physical.
Exploring Dark Energy With Galaxy Cluster Peculiar Velocities Lloyd Knox & Alan Peel University of California, Davis.
Cosmology topics, collaborations BOOMERanG, Cosmic Microwave Background LARES (LAser RElativity Satellite), General Relativity and extensions, Lense-Thirring.
Probing the field of Radio Astronomy with the SKA and the Hartebeesthoek Radio Observatory: An Engineer’s perspective Sunelle Otto Hartebeesthoek Radio.
SZE in WMAP Data Jose M. Diego & Bruce Partridge 2010, MNRAS, 402, 1179 La Thuile, March 2012.
1 Studying clusters and cosmology with Chandra Licia Verde Princeton University Some thoughts…
Dark Energy and Void Evolution Dark Energy and Void Evolution Enikő Regős Enikő Regős.
Observing galaxy cluster simulations with an X-ray telescope Elena Rasia Department of Physics, University of Michigan Chandra Fellows Symposium Harvard-Smithsonian.
1 ACT  Atacama Cosmology Telescope  Funded by NSF  Will measure CMB fluctuations on small angular scales  Probe the primordial power spectrum and the.
Cosmology with the 21 cm Transition Steve Furlanetto Yale University September 25, 2006 Steve Furlanetto Yale University September 25, 2006.
The Future of the Past Harvard University Astronomy 218 Concluding Lecture, May 4, 2000.
The Sunyaev-Zel’dovich effect The Sunyaev-Zel’dovich effect AMI day, 2011 September 30 Mark Birkinshaw University of Bristol.
K.S. Dawson, W.L. Holzapfel, E.D. Reese University of California at Berkeley, Berkeley, CA J.E. Carlstrom, S.J. LaRoque, D. Nagai University of Chicago,
Quintessence – Phenomenology. How can quintessence be distinguished from a cosmological constant ?
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
A Primer on SZ Surveys Gil Holder Institute for Advanced Study.
Annalisa Bonafede PhD student at IRA Radio Astronomy Institute Bologna (Italy) With: L. Feretti, G. Giovannini, M. Murgia, F. Govoni, G. B.Taylor, H. Ebeling,
Constraining Galactic Halos with the SZ-effect
Probing Dark Matter with the CMB and Large-Scale Structure 1 Cora Dvorkin IAS (Princeton) Harvard (Hubble fellow) COSMO 2014 August 2014, Chicago.
14 July 2009Keith Bechtol1 GeV Gamma-ray Observations of Galaxy Clusters with the Fermi LAT Keith Bechtol representing the Fermi LAT Collaboration July.
Progress on Cosmology Sarah Bridle University College London.
Modelling radio galaxies in simulations: CMB contaminants and SKA / Meerkat sources by Fidy A. RAMAMONJISOA MSc Project University of the Western Cape.
P olarized R adiation I maging and S pectroscopy M ission Probing cosmic structures and radiation with the ultimate polarimetric spectro-imaging of the.
Eric V. Linder (arXiv: v1). Contents I. Introduction II. Measuring time delay distances III. Optimizing Spectroscopic followup IV. Influence.
Multiwavelength observations of a partially occulted solar flare Laura Bone, John C.Brown, Lyndsay Fletcher.
ASIAA NTU PHYS J.H.P.Wu & AMiBA Team To remove the ground pickup and electronic DC component in the data, we tracked the source- (P1) and tail- (P2) patches.
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
Constraints on the neutrino mass by future precise CMB polarization and 21cm line observations Yoshihiko Oyama The Graduate University for Advanced Studies.
Imaging Compact Supermassive Binary Black Holes with VLBI G. B. Taylor (UNM), C. Rodriguez (UNM), R. T. Zavala (USNO) A. B. Peck (CfA), L. K. Pollack (UCSC),
The KAT/SKA project and Related Research Catherine Cress (UKZN/KAT/UWC)
Summary(3) -- Dynamics in the universe -- T. Ohashi (Tokyo Metropolitan U) 1.Instrumentation for dynamics 2.Cluster hard X-rays 3.X-ray cavities 4.Dark.
CMB Polarization from Patchy Reionization Gil Holder.
Low Frequency Background and Cosmology Xuelei Chen National Astronomical Observatories Kashigar, September 10th 2005.
MAPping the Universe ►Introduction: the birth of a new cosmology ►The cosmic microwave background ►Measuring the CMB ►Results from WMAP ►The future of.
Francisco Javier Castander Serentill Institut d’Estudis Espacials de Catalunya (IEEC) Institut de Ciències de l’Espai (ICE/CSIC) Barcelona Exploiting the.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
SUNYAEV-ZELDOVICH EFFECT. OUTLINE  What is SZE  What Can we learn from SZE  SZE Cluster Surveys  Experimental Issues  SZ Surveys are coming: What.
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
Cosmology with Gravitaional Lensing
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
INFRARED-BRIGHT GALAXIES IN THE MILLENNIUM SIMULATION AND CMB CONTAMINATION DANIEL CHRIS OPOLOT DR. CATHERINE CRESS UWC.
The Planck Satellite Hannu Kurki-Suonio University of Helsinki Finnish-Japanese Workshop on Particle Cosmology, Helsinki
Relativistic Corrections to the Sunyaev-Zeldovich Effect for Clusters of Galaxies Satoshi Nozawa Josai Junior College for Women 1/33 Collaborators: N.
Structure Formation in the Universe Concentrate on: the origin of structure in the Universe How do we make progress?How do we make progress? What are the.
Gas in Galaxy Clusters Tracy Clarke (NRAO) June 5, 2002 Albuquerque, AAS.
Bwdem – 06/04/2005doing cosmology with galaxy clusters Cosmology with galaxy clusters: testing the evolution of dark energy Raul Abramo – Instituto de.
X-ray Astronomy School 2002 Clusters of Galaxies (and some Cosmology) Scientific and Data Analysis Issues Keith Arnaud NASA/GSFC and UMCP.
Astrophysics from the Moon in the Radio Band Gianfranco Brunetti INAF - IRA, Bologna.
The Cosmic Microwave Background
Remote Quadrupole Measurements from Reionization Gil Holder Collaborators: Jon Dudley; Alex van Engelen (McGill) Ilian Iliev (CITA/Zurich); Olivier Dore.
FIRST LIGHT A selection of future facilities relevant to the formation and evolution of galaxies Wavelength Sensitivity Spatial resolution.
1 Astro Particle Cosmology Studying SZ Effects with ALMA ALMA/ARC 2007 ALMA/ARC 2007 March 2, 2007 Sergio Colafrancesco Sergio Colafrancesco INAF - Osservatorio.
NuSTAR, ITS BACKGROUND AND CLUSTERS OF GALAXIES FABIO GASTALDELLO INAF, IASF-Milano And The Galaxy Clusters NuSTAR Team.
The Planck Satellite Matthew Trimble 10/1/12. Useful Physics Observing at a redshift = looking at light from a very distant object that was emitted a.
The interplay of GeV electrons & magnetic fields: The interplay of GeV electrons & magnetic fields: interesting aspects in galaxies, radio galaxies and.
The cross-correlation between CMB and 21-cm fluctuations during the epoch of reionization Hiroyuki Tashiro N. Aghanim (IAS, Paris-sud Univ.) M. Langer.
PLANCK TEAM of the DISCOVERY Center. The most mysterious problems.
The Dark Side of the Universe L. Van Waerbeke APSNW may 15 th 2009.
Biased total mass of CC galaxy clusters by SZE measurements Andrea Conte Astronomy PhD, XXIII Cycle “Sapienza” University of Rome. School of Astrophysics.
Towards the first detection using SPT polarisation
Cooperate with X-L. Chen , Q. Yuan, X-J. Bi, Z-Q. Shen
Quantum Spacetime and Cosmic Inflation
Transition Region and Coronal Explorer (TRACE)
Presentation transcript:

1 The SZE in the SKA & MILLIMETRON Era

The SZE: Physics high-energy photon Internal High-E electrons - thermal (supra-thermal) - relativistic ↑ Use CMB photons to extract plasma information Use CMB photons to extract plasma information

The SZE: manifestations SZE polarization SZ DM SZ kin SZ warm SZ th SZE Intensity 5 keV 20 keV SZ rel depends on f e (p) and I CMB vectorial depends on f e (p) and I CMB scalar

SZE: multi- Astro Physics SPT MUSTANG OVRO Accessible from Space Independent of astrophysics Strongly dependent on astrophysics kT= 7 keV kT=10 keV kT=15 keV kT=20 keV Sensitive to CMB Insensitive to CMB Need: wide- coverage (≈ GHz) sensitivity (<  K) Imaging (arcsec)

Exploiting SZE information [DeBernardis, Colafrancesco et al. 2012] Different spectroscopic configurations for studying the SZE in cosmic structures SZ th SZ non-th SZ kin Foreground

Exploiting SZE information [DeBernardis, Colafrancesco et al. 2012] EC2 3m passive EC3 12m passive EC5 12m active Different spectroscopic configurations for studying the SZE in cosmic structures PLANCK SPT Herschel OLIMPO Millimetron PLANCK

Millimetron cold DFTS, cold telescope (4K) on a satellite in L2 (de Bernardis, S.C. et al. 2012) SZE: parameter extraction 1 hour

OLIMPO: warm DFTS, warm telescope on a balloon (de Bernardis, S.C. et al. 2012) SZE: parameter extraction 3 hours

SZE: best frequency bands 5-30 GHz GHz DFTS (baseline) Band 1Band 2Band 3Band 4 Frequency (GHz)100–200130–350350–700700–1000 FWHM (arcmin) # of independent beams/detectors 6/249/3616/4825/100 Background (pW) Detector NEP (aW s 1/2 ) Spectral Resolution (GHz) 1.25 Spectral sensitivity (aW s 1/2 /GHz) Square Kilometer Array Spektr-M

SZE: frequency & sensitivity VLA E-VLA MerKAT SKA-P1 SKA-P2 Square Kilometer Array Spektr-M W Hz -1/

SZE: MILLIMETRON ( GHz) Cluster physics characterization Thermal, non-thermal pressure stratification Multiple components Relativistic plasma physics (thermal, non-thermal) Spectro-polarimetry: 3D tomography Cosmology Cluster cosmology (with no physics biases/priors) Radio-galaxy cosmology“ Galaxy cosmology“ SZE Polarization Measuring CMB polarization The Cosmological Principle DM nature Cluster physics characterization Thermal, non-thermal pressure stratification Multiple components Relativistic plasma physics (thermal, non-thermal) Spectro-polarimetry: 3D tomography Cosmology Cluster cosmology (with no physics biases/priors) Radio-galaxy cosmology“ Galaxy cosmology“ SZE Polarization Measuring CMB polarization The Cosmological Principle DM nature Millimetron -range probes the electron plasma physics … and yields related cosmology Millimetron -range probes the electron plasma physics … and yields related cosmology

SZE: physics characterization MACS J A Triple-Merger Cluster ? [Mroczkowski et al. 2011] Bullet cluster A multi-plasma stratification ? Radio + X-rays Radio + Temperature Radio + Lensing

SZE: Bullet tomography Morphological SZE A GHz Laboca600 GHz Herschel Shock hot Bullet cold [Prokhorov, S.C. et al. 2011] T standard deviation First measurement of the Temperature standard deviation in galaxy clusters using the SZE [Prokhorov & Colafrancesco 2012] ~ 13.9 keV  = 10.6 ± 3.8 keV Measure of the temperature stratification in clusters Measure of plasma in-homogeneity (th.+non-th.) along the line-of-sight Bullet Cluster

SZE: Bullet Astro Physics kT 1 = 13.9 keV  = kT 2 = 25 keV,  = Multi - Temperature Thermal + non-thermal kT = 13.9 keV  = n e ~E -2.7, p 1 =1,  = Evidence of non-gravitational activity in the cluster merging Shock acceleration or MHD acceleration Stochastic electron acceleration Continuous hadron acceleration Non-thermal Thermal T1 T2 [S.C. et al. 2011]  2 =1.27 d.o.f.=1 rms fom=1  2 =0.44 d.o.f.=2 rms fom=0.35

SZE: resolving cluster atmospheres 150 GHz 350 GHz 3 m. 12 m. X-ray Chandra MS GHz 350 GHz R=100 Millimetron

MACS J B) kT = 12.8 kev (+2.1/-1.6) V = 3600 km/s (+3440/-2160) V = 3238 km/s (252/-242) C) kT = 34.0 kev (+11/-7.9) V = km/s (+2960/-2480) V = -733 k/s (+486/-478) D) kT ≈ 4 keV V = 831 km/s (843/-700) A) kT ≈ 2 keV V = 278 km/s (+295/-339) A Triple-Merger Cluster ?

MACS J B) kT = 12.8 kev (+2.1/-1.6) V = 3600 km/s (+3440/-2160) V = 3238 km/s (252/-242) C) kT = 34.0 kev (+11/-7.9) V = km/s (+2960/-2480) V = -733 k/s (+486/-478) D) kT ≈ 4 keV V = 831 km/s (843/-700) A) kT ≈ 2 keV V = 278 km/s (+295/-339) A Triple-Merger Cluster ? E) Non-thermal component s=3.5, p1=0.1  = – E) Non-thermal component s=3.5, p1=0.1  = –

MACS J Comp. B Comp. C [S.C. & Marchegiani 2013] Cluster physics and Dynamics at high frequency > 350 GHz

SZE spectro-polarimetry Juttner Maxwell-Boltzmann Non-relativistic 1) Derive the velocity DF of electrons by using SZE observations at > 4 frequencies [Prokhorov, Colafrancesco, et al. 2011] 5 keV 8 keV 13 keV 20 keV BB spectrum 2) Polarization due to finite optical depth  allow to measure density and velocity distribution of the electrons

SZE cluster cosmology Perseus [Colafrancesco & Marchegiani 2010] SZEX-Ray SZE spectroscopy will allow to derive spatially resolved T-profiles for nearby clusters out to large radii: Separate thermal and non-thermal pressure components: T profile uniquely sampled in the outer parts of the cluster Inversion Technique SZE → T, , V p, T CMB SZE sensitivity ( nK) will allow to reach the mass limit at which clusters and groups can be found Unbiased total mass reconstruction due to sensitivity to total pressure  I SZE and internal velocity fields  SZE

SZE: Cosmology with clusters Measure the CMB anisotropy at positions U 1 and U 2 by using galaxy cluster SZE Measure the CMB anisotropy at positions U 1 and U 2 by using galaxy cluster SZE S CMB Quadrupole Q 2 Cluster Polarized SZE reflects Q 2 [Colafrancesco, Tullio & Emritte ] Cosmological Principle

SZE: Cosmology with clusters Cluster Π−(th)RG Π−(non-th) Cluster Π−(th)RG Π−(non-th) S.C. et al. [ ] Measure the CMB multipoles at the position of clusters/RGs in the Universe 1  Jy/arcmin  Jy/arcmin  Jy/arcmin  Jy/arcmin 2 Quadrupole Octupole

SZE: SKA (10-30 GHz) Cluster cosmology: SZE and SZE-21cm CMB spectral modifications at early epochs: SZE- 21cm Dark Ages and EoR: SZE 21cm DM heating: SZE-21cm Primordial B-field Fundamental physics Photon mass and decay … SKA -range probes the background radiation fields … and yields related cosmology SKA -range probes the background radiation fields … and yields related cosmology

SZE cluster cosmology 3C292 3C294 Bullet cls VLA E-VLA MerKAT SKA-P1 SKA-P2 The SKA can measure SZE in various objects: -Clusters -Radiogalaxies -Galaxy halos/winds The SKA can measure SZE in various objects: -Clusters -Radiogalaxies -Galaxy halos/winds

SZE-21cm: DA and EoR CMB field modified SZE-21cm Collision/abs. z= Ly-  z=30-20 X-ray z= z=3 no DM extreme M min =10 -6 M o M min =10 -3 M o no DM (Colafrancesco & Marchegiani 2014) kT e =7 keV

SZE: the photon is not a theoretical requirement Classical electrodynamics: Maxwell equations are substituted by Proca (1936) equations for m  ≠ 0 Quantum theory: QED with Stuckelberg mechanism (1938) allows a non-zero photon mass without violation of Gauge invariance [Goldhaber & Nieto 2010] Photon can decay with lifetime    Good limits on m  : No tight limit on   : ExperimentResultReference Laboratory Williams, Faller & Hill (1971) Earth B-field Davis, Goldhaber & Nieto (1975) Solar wind Ryutov (2007)

SZE with  decay CMB spectrum modified by photon decay as function of [Colafrancesco & Marchegiani 2014]

Difference between the SZE without  decay and the SZE with  decay SKA (30 h) 260 h SZE with  decay: A2163 SKA can measure, or set the most stringent limits on, the  decay (Colafrancesco & Marchegiani 2014, A&A, 562, L2)

Conclusions Millimetron and SKA observations of the SZE have the potential of addressing several key questions for Cosmology and fundamental Astro-Physics Cosmological parameters and standard cosmological probes The Nature of Dark Matter (DM) The proof of the Cosmological Principle (CP) Origin of Cosmological magnetic field (B) The Dark Ages and EoR (DA - EoR) Fundamental properties of the Photon (  ) This is possible thanks to the un-precedent Wide-band spectro-polarimetry High sensitivity High spatial resolution Survey and pointed observation modes

THANKS for your attention