Q4.1 You are standing at rest and begin to walk forward. What force pushes you forward? 1. the force of your feet on your ground 2. the force of your acceleration.

Slides:



Advertisements
Similar presentations
Newton’s Laws of Motion
Advertisements

Q5.1 A car engine is suspended from a chain linked at O to two other chains. Which of the following forces should be included in the free-body diagram.
Physics 7C lecture 04 Dynamics Tuesday October 8, 8:00 AM – 9:20 AM
Forces.
© 2012 Pearson Education, Inc. Q4.1 v Motor Cable Elevator An elevator is being lifted at a constant speed by a steel cable attached to an electric motor.
Copyright © 2012 Pearson Education Inc. Application of Newton’s laws: free body diagram Physics 7C lecture 03 Thursday October 3, 8:00 AM – 9:20 AM Engineering.
F As a rocket accelerates it experiences a force F which is responsible for the acceleration. The reaction force to this force F (the other force in the.
Q5.1 A car engine is suspended from a chain linked at O to two other chains. Which of the following forces should be included in the free-body diagram.
 The force that act on the object are balanced in all direction.  The force cancel each other, so that the resultant force or net force is zero.  Newton’s.
Chapter 4 The Laws of Motion.
Ropes and Pulleys.
Uniform Motion The stretch or compression of a spring can be used to measure a force. If the cart is at rest, a force is needed to make the cart speed.
© 2012 Pearson Education, Inc. Q6.1 A. The cable does positive work on the elevator, and the elevator does positive work on the cable. v Motor Cable Elevator.
Consider a horse pulling a buggy. Is the following statement true?
Dynamics Questions Chris Parkes. Motion s-t graph I drop a ball out of the window of my office (4 th floor) – which graph best represents the distance.
S-24 Define the following terms A. Weight B. Gravity C. Friction
Chapter 4 Sec 6-8 Weight, Vector Components, and Friction.
AIM: What are Newton’s three laws, and how do they describe how an object behaves? Do Now: - Draw a Free Body Diagram for the block below if 1. it is at.
Chapter 4 Forces and the Laws of Motion. Newton’s First Law An object at rest remains at rest, and an object in motion continues in motion with constant.
Chapter 4 The Laws of Motion Phy 2053 Conceptual Questions Phy 2053 Conceptual Questions.
Newton’s Laws of Motion Sections ) 1,3,4,5,6,8,12)
2 pt 3 pt 4 pt 5pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2pt 3 pt 4pt 5 pt 1pt 2pt 3 pt 4 pt 5 pt 2 pt 4 pt 6 pt 8 pt 10 pt 1pt Vocabulary Words Describing Motion.
Notes Force. Force is a push or pull exerted on some object. Forces cause changes in velocity. The SI unit for force is the Newton. 1 Newton = 1 kg m/s.
Chapters 5-6 Test Review Forces & Motion Forces  “a push or a pull”  A force can start an object in motion or change the motion of an object.  A force.
Newton's Laws of Motion 1. Newton 1 st law of motion 2. Newton 3 rd law of motion 3. Newton 2 nd law of motion.
AP Physics C Chapter 4
Chapter 5 THE LAWS OF MOTION. Force, net force : Force as that which causes an object to accelerate. The net force acting on an object is defined as.
Uniform Motion The stretch or compression of a spring can be used to measure a force. If the cart is at rest, a force is needed to make the cart speed.
Force and Motion ISCI Force: ‘push’ or ‘pull’ on an object 2. Objects in motion stay in motion unless enacted upon by a ‘unbalanced’ force. Newton’s.
If the sum of all the forces acting on a moving object is zero, the object will (1) slow down and stop (2) change the direction of its motion (3) accelerate.
What are two SI units of force? When an unbalanced force acts on an object, which of the following occurs? 1. the weight increases 2. the inertia of.
Laws of Motion Review.
Lecture 6 Newton’s Laws of Motion. Exam #1 - next Thursday!  20 multiple-choice problems - No notes allowed; equation sheet provided - A calculator will.
Forces Ch 7 6 th grade. 7.1 Vocabulary Force Net force.
Forces In One Dimension
Newton’s Third Law of Motion In any interaction between two objects, the forces exerted are always equal in magnitude and opposite in direction. “For every.
FORCE. Any push or pull Has two components: magnitude and direction Force is a quantity capable of changing the size, shape, or motion of an object SI.
Two blocks (m1 = 5kg, m2 = 2.5kg) are in contact on a frictionless table. A constant horizontal force FA = 3N is applied to the larger block as shown.
CHAPTER 2 MOTION. PS 10 a,b The student will investigate and understand scientific principles and technological applications of force, and motion. Key.
Example Problems for Newton’s Second Law Answers
Force and Motion–I Chapter 5. Newton's First and Second Laws A force: o Is a “push or pull” acting on an object o Causes acceleration We will focus on.
NEWTON'S LAWS OF MOTION Philosophiae Naturalis Principia Mathematica (1686)
What are different types of forces? What factors affect the force of gravity? What happens when forces combine? How are balanced and unbalanced forces.
Chapter Menu Lesson 1: Combining Forces Lesson 2: Types of Force
Newton’s Laws.
Chapter 11: Force and Newton’s Laws
Force is part of an interaction
AP Physics Review Ch 4 – Forces and Newton’s Laws of Motion
1. The Levi Strauss trademark shows two horses trying to pull apart a pair of pants. Suppose Levi had only one horse and attached the other side.
A force is a push or a pull
Newton’s Laws Forces and Motion.
Aim: How can we apply Newton’s Second Law?
Q5.1 A car engine is suspended from a chain linked at O to two other chains. Which of the following forces should be included in the free-body diagram.
1A. The Levi Strauss trademark shows two horses trying to pull apart a pair of pants. Suppose Levi had only one horse and attached the other side.
Newton’s Laws of Motion
Lesson 4.2 Newton’s First Law
Aim: How do we explain Newton’s 3rd Law?
Forces.
Newton‘s 3rd Law.
GPS: SP1. Students will analyze the relationship between force, mass, gravity, and the motion of objects.
Newton’s Laws: Practice Problems
Chapter Menu Lesson 1: Combining Forces Lesson 2: Types of Force
Newton’s Laws: Practice Problems
Example Problems for Newton’s Second Law Answers
©1997 by Eric Mazur Published by Pearson Prentice Hall
Aim: How do we explain Newton’s 3rd Law?
Newton’s Third Law For every action, there is an equal and opposite reaction When one object exerts a force on a second object, the second object simultaneously.
Newton’s 3rd Law and Free Body Diagrams
Motion & Forces: Newton’s Laws of Motion
Lesson 3 Reading Guide - Vocab
Presentation transcript:

Q4.1 You are standing at rest and begin to walk forward. What force pushes you forward? 1. the force of your feet on your ground 2. the force of your acceleration 3. the force of your velocity 4. the force of your momentum 5. the force of the ground on your feet

A4.1 You are standing at rest and begin to walk forward. What force pushes you forward? 1. the force of your feet on your ground 2. the force of your acceleration 3. the force of your velocity 4. the force of your momentum 5. the force of the ground on your feet

Q4.2 An apple sits at rest on a horizontal table top. The gravitational force on the apple (its weight) is one half of an action-reaction pair. What force is the other half? 1. the force of the Earth’s gravity on the apple 2. the upward force that the table top exerts on the apple 3. the upward force that the apple exerts on the Earth 4. the downward force that the apple exerts on the table top 5. the frictional force between the apple and the table top

A4.2 An apple sits at rest on a horizontal table top. The gravitational force on the apple (its weight) is one half of an action-reaction pair. What force is the other half? 1. the force of the Earth’s gravity on the apple 2. the upward force that the table top exerts on the apple 3. the upward force that the apple exerts on the Earth 4. the downward force that the apple exerts on the table top 5. the frictional force between the apple and the table top

Q4.3 An apple sits at rest on a horizontal table top. The weight of the apple is equal to the magnitude of the upward force that the table top exerts on the apple. Why? 1. this is a consequence of Newton’s first law 2. this is a consequence of Newton’s third law 3. because we assume that the table top is perfectly rigid 4. two of the above three statements are correct 5. all of the first three statements are correct

A4.3 An apple sits at rest on a horizontal table top. The weight of the apple is equal to the magnitude of the upward force that the table top exerts on the apple. Why? 1. this is a consequence of Newton’s first law 2. this is a consequence of Newton’s third law 3. because we assume that the table top is perfectly rigid 4. two of the above three statements are correct 5. all of the first three statements are correct

Q4.4 A woman pulls on a 6.00-kg crate, which in turn is connected to a 4.00-kg crate by a light rope. The light rope remains taut. Compared to the 6.00–kg crate, the lighter 4.00-kg crate 1. is subjected to the same net force and has the same acceleration 2. is subjected to a smaller net force and has the same acceleration 3. is subjected to the same net force and has a smaller acceleration 4. is subjected to a smaller net force and has a smaller acceleration 5. none of the above

A4.4 A woman pulls on a 6.00-kg crate, which in turn is connected to a 4.00-kg crate by a light rope. The light rope remains taut. Compared to the 6.00–kg crate, the lighter 4.00-kg crate 1. is subjected to the same net force and has the same acceleration 2. is subjected to a smaller net force and has the same acceleration 3. is subjected to the same net force and has a smaller acceleration 4. is subjected to a smaller net force and has a smaller acceleration 5. none of the above

Q4.5 You are pushing a 1.00-kg food tray through the cafeteria line with a constant 9.0-N force. As the tray moves, it pushes on a 0.50-kg milk carton. If the food tray and milk carton move at constant speed, 1. the tray exerts more force on the milk carton than the milk carton exerts on the tray 2. the tray exerts less force on the milk carton than the milk carton exerts on the tray 3. the tray exerts as much force on the milk carton as the milk carton exerts on the tray

A4.5 You are pushing a 1.00-kg food tray through the cafeteria line with a constant 9.0-N force. As the tray moves, it pushes on a 0.50-kg milk carton. If the food tray and milk carton move at constant speed, 1. the tray exerts more force on the milk carton than the milk carton exerts on the tray 2. the tray exerts less force on the milk carton than the milk carton exerts on the tray 3. the tray exerts as much force on the milk carton as the milk carton exerts on the tray

Q4.6 You are pushing a 1.00-kg food tray through the cafeteria line with a constant 9.0-N force. As the tray moves, it pushes on a 0.50-kg milk carton. If the food tray and milk carton are accelerating to the left, 1. the tray exerts more force on the milk carton than the milk carton exerts on the tray 2. the tray exerts less force on the milk carton than the milk carton exerts on the tray 3. the tray exerts as much force on the milk carton as the milk carton exerts on the tray

A4.6 You are pushing a 1.00-kg food tray through the cafeteria line with a constant 9.0-N force. As the tray moves, it pushes on a 0.50-kg milk carton. If the food tray and milk carton are accelerating to the left, 1. the tray exerts more force on the milk carton than the milk carton exerts on the tray 2. the tray exerts less force on the milk carton than the milk carton exerts on the tray 3. the tray exerts as much force on the milk carton as the milk carton exerts on the tray

Q4.7 Two crates, A and B, sit at rest side-by-side on a frictionless horizontal surface. You apply a horizontal force to crate A as shown. Which statement is correct? 1. the acceleration has a greater magnitude than if B were in the back and A were in the front 2. the acceleration has a smaller magnitude than if B were in the back and A were in the front 3. the crates will not move if the force magnitude F is less than the combined weight of the two crates 4. two of the above three statements are correct 5. none of the first three statements is correct

A4.7 Two crates, A and B, sit at rest side-by-side on a frictionless horizontal surface. You apply a horizontal force to crate A as shown. Which statement is correct? 1. the acceleration has a greater magnitude than if B were in the back and A were in the front 2. the acceleration has a smaller magnitude than if B were in the back and A were in the front 3. the crates will not move if the force magnitude F is less than the combined weight of the two crates 4. two of the above three statements are correct 5. none of the first three statements is correct

Q4.8 A horse is hitched to a wagon. Which statement is correct? 1. the force the horse exerts on the wagon is greater than the force that the wagon exerts on the horse 2. the force the horse exerts on the wagon is less than the force that the wagon exerts on the horse 3. the force the horse exerts on the wagon is just as strong as the force that the wagon exerts on the horse 4. the answer depends on the velocity of horse and wagon 5. the answer depends on the acceleration of horse and wagon

A4.8 A horse is hitched to a wagon. Which statement is correct? 1. the force the horse exerts on the wagon is greater than the force that the wagon exerts on the horse 2. the force the horse exerts on the wagon is less than the force that the wagon exerts on the horse 3. the force the horse exerts on the wagon is just as strong as the force that the wagon exerts on the horse 4. the answer depends on the velocity of horse and wagon 5. the answer depends on the acceleration of horse and wagon