Chapter 11 Signal Processing with Wavelets. Objectives Define and illustrate the difference between a stationary and non-stationary signal. Describe the.

Slides:



Advertisements
Similar presentations
DCSP-12 Jianfeng Feng
Advertisements

DCSP-13 Jianfeng Feng
Learning Wavelet Transform by MATLAB Toolbox Professor : R.J. Chang Student : Chung-Hsien Chao Date : 2011/12/02.
Introduction and Overview Dr Mohamed A. El-Gebeily Department of Mathematical Sciences KFUPM
DFT/FFT and Wavelets ● Additive Synthesis demonstration (wave addition) ● Standard Definitions ● Computing the DFT and FFT ● Sine and cosine wave multiplication.
Filter implementation of the Haar wavelet Multiresolution approximation in general Filter implementation of DWT Applications - Compression The Story of.
Sampling and quantization Seminary 2. Problem 2.1 Typical errors in reconstruction: Leaking and aliasing We have a transmission system with f s =8 kHz.
Spatial and Temporal Data Mining
CEN352, Dr. Ghulam Muhammad King Saud University
0 - 1 © 2007 Texas Instruments Inc, Content developed in partnership with Tel-Aviv University From MATLAB ® and Simulink ® to Real Time with TI DSPs Wavelet.
Wavelets and Multiresolution Processing
Time and Frequency Representations Accompanying presentation Kenan Gençol presented in the course Signal Transformations instructed by Prof.Dr. Ömer Nezih.
Lecture05 Transform Coding.
With Applications in Image Processing
Wavelet Transform A very brief look.
Paul Heckbert Computer Science Department Carnegie Mellon University
Wavelet Transform. What Are Wavelets? In general, a family of representations using: hierarchical (nested) basis functions finite (“compact”) support.
Multi-Resolution Analysis (MRA)
Introduction to Wavelets
Wavelet-based Coding And its application in JPEG2000 Monia Ghobadi CSC561 project
Introduction to Wavelets -part 2
ECE 501 Introduction to BME ECE 501 Dr. Hang. Part V Biomedical Signal Processing Introduction to Wavelet Transform ECE 501 Dr. Hang.
Systems: Definition Filter
Over-Sampling and Multi-Rate DSP Systems
ENG4BF3 Medical Image Processing
EE513 Audio Signals and Systems Digital Signal Processing (Systems) Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
GG 313 Lecture 26 11/29/05 Sampling Theorem Transfer Functions.
The Wavelet Tutorial: Part3 The Discrete Wavelet Transform
Introduction to Lifting Wavelet Transform (computationally efficient filterbank implementation) and Homework 3 Feb. 2, 2010.
Details, details… Intro to Discrete Wavelet Transform The Story of Wavelets Theory and Engineering Applications.
CSE &CSE Multimedia Processing Lecture 8. Wavelet Transform Spring 2009.
The Story of Wavelets.
Wavelets and Filter Banks
Wireless and Mobile Computing Transmission Fundamentals Lecture 2.
Rajeev Aggarwal, Jai Karan Singh, Vijay Kumar Gupta, Sanjay Rathore, Mukesh Tiwari, Dr.Anubhuti Khare International Journal of Computer Applications (0975.
Wavelet transform Wavelet transform is a relatively new concept (about 10 more years old) First of all, why do we need a transform, or what is a transform.
Professor : R.J. Chang Student : Che-Wei Chen Date :2013/12/13 Learning Wavelet Transform by MATLAB Toolbox.
ECE472/572 - Lecture 13 Wavelets and Multiresolution Processing 11/15/11 Reference: Wavelet Tutorial
DCT.
Different types of wavelets & their properties Compact support Symmetry Number of vanishing moments Smoothness and regularity Denoising Using Wavelets.
Wavelets Pedro H. R. Garrit 05/209/2015.
Wavelet Transform Yuan F. Zheng Dept. of Electrical Engineering The Ohio State University DAGSI Lecture Note.
Fourier and Wavelet Transformations Michael J. Watts
APPLICATION OF A WAVELET-BASED RECEIVER FOR THE COHERENT DETECTION OF FSK SIGNALS Dr. Robert Barsanti, Charles Lehman SSST March 2008, University of New.
By Dr. Rajeev Srivastava CSE, IIT(BHU)
In The Name of God The Compassionate The Merciful.
WAVELET NOISE REMOVAL FROM BASEBAND DIGITAL SIGNALS IN BANDLIMITED CHANNELS Dr. Robert Barsanti SSST March 2010, University of Texas At Tyler.
Feature Matching and Signal Recognition using Wavelet Analysis Dr. Robert Barsanti, Edwin Spencer, James Cares, Lucas Parobek.
Signal reconstruction from multiscale edges A wavelet based algorithm.
Lecture 19 Spectrogram: Spectral Analysis via DFT & DTFT
PERFORMANCE OF A WAVELET-BASED RECEIVER FOR BPSK AND QPSK SIGNALS IN ADDITIVE WHITE GAUSSIAN NOISE CHANNELS Dr. Robert Barsanti, Timothy Smith, Robert.
Wavelet Transform Advanced Digital Signal Processing Lecture 12
Speech Signal Processing
Spectral Analysis Spectral analysis is concerned with the determination of the energy or power spectrum of a continuous-time signal It is assumed that.
Wavelets : Introduction and Examples
The Story of Wavelets Theory and Engineering Applications
Fourier and Wavelet Transformations
EE Audio Signals and Systems
CS Digital Image Processing Lecture 9. Wavelet Transform
Multi-resolution analysis
Multi-Resolution Analysis
Increasing Watermarking Robustness using Turbo Codes
Image Transforms for Robust Coding
The Story of Wavelets Theory and Engineering Applications
Wavelet transform Wavelet transform is a relatively new concept (about 10 more years old) First of all, why do we need a transform, or what is a transform.
Assoc. Prof. Dr. Peerapol Yuvapoositanon
Visual Communication Lab
CEN352, Dr. Ghulam Muhammad King Saud University
Chapter 3 Sampling.
Wavelet Analysis Objectives: To Review Fourier Transform and Analysis
Presentation transcript:

Chapter 11 Signal Processing with Wavelets

Objectives Define and illustrate the difference between a stationary and non-stationary signal. Describe the relationship between wavelets and sub- band coding of a signal using quadrature mirror filters with the property of perfect reconstruction. Illustrate the multi-level decomposition of a signal into approximation and detail components using wavelet decomposition filters. Illustrate the application of wavelet analysis using MATLAB ® to noise suppression, signal compression, and the identification of transient features in a signal.

Motivation for Wavelet Analysis Signals of practical interest are usually non- stationary, meaning that their time-domain and frequency-domain characteristics vary over short time intervals (i.e., music, seismic data, etc) Classical Fourier analysis (Fourier transforms) assumes a signal that is either infinite in extent or stationary within the analysis window. Non-stationary analysis requires a different approach: Wavelet Analysis Wavelet analysis also produces better solutions to important problems such as the transform compression of images (jpeg versus jpeg2000)

Basic Theory of Wavelets Wavelet analysis can be understood as a form of sub-band coding with quadrature mirror filters The two basic wavelet processes are decomposition and reconstruction

Wavelet Decomposition A single level decomposition puts a signal through 2 complementary low-pass and high-pass filters The output of the low-pass filter gives the approximation (A) coefficients, while the high pass filter gives the detail (D) coefficients Decomposition Filters for Daubechies-8 Wavelets

Wavelet Reconstruction The A and D coefficients can be used to reconstruct the signal perfectly when run through the mirror reconstruction filters of the wavelet family

Wavelet Families Wavelet families consist of a particular set of quadrature mirror filters with the property of perfect reconstruction. These families are completely determined by the impulse responses of the set of 4 filters.

Example: Filter Set for the Daubechies-5 Wavelet Family % Set wavelet name. >> wname = 'db5'; % Compute the four filters associated with wavelet name given % by the input string wname. >> [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(wname); >> subplot(221); stem(Lo_D); >> title('Decomposition low-pass filter'); >> subplot(222); stem(Hi_D); >> title('Decomposition high-pass filter'); >> subplot(223); stem(Lo_R); >> title('Reconstruction low-pass filter'); >> subplot(224); stem(Hi_R); >> title('Reconstruction high-pass filter'); >> xlabel('The four filters for db5')

Example: Filter Set for the Daubechies-5 Wavelet Family

Decomposition FiltersReconstruction Filters >> fvtool(Lo_D,1,Hi_D,1) >> fvtool(Lo_R,1,Hi_R,1)

Multi-level Decomposition of a Signal with Wavelets The decomposition tree can be schematically described as:

Multi-level Decomposition of a Signal with Wavelets Frequency Domain (Sub-band Coding)

Example: One-level Decomposition of a Noisy Signal >> x=analog(100,4,40,10000); % Construct a 100 Hz sinusoid of amplitude 4 >> xn=x+0.5*randn(size(x)); % Add Gaussian noise >> [cA,cD]=dwt(xn,'db8'); % Compute the first level decomposition with dwt % and the Daubechies-8 wavelet >> subplot(3,1,1),plot(xn),title('Original Signal') >> subplot(3,1,2),plot(cA),title('One Level Approximation') >> subplot(3,1,3),plot(cD),title('One Level Detail') Single level discrete wavelet decomposition with the Daubechies-8 wavelet family

One-Level Decomposition of a Non-Stationary Signal >> fs=2500; >> len=100; >> [x1,t1]=analog(50,.5,len,fs); % The time vector t1 is in milliseconds >> [x2,t2]=analog(100,.25,len,fs); >> [x3,t3]=analog(200,1,len,fs); >> y1=cat(2,x1,x2,x3); % Concatenate the signals >> ty1=[t1,t2+len,t3+2*len]; %Concatenate the time vectors 1 to len, len to 2*len, etc. >> [A1,D1]=dwt(y1,'db8'); >> subplot(3,1,1),plot(y1),title('Original Signal') >> subplot(3,1,2),plot(A1),title('One Level Approximation') >> subplot(3,1,3),plot(D1),title('One Level Detail') The detail coefficients reveal the transitions in the non-stationary signal

De-Noising a Signal with Multilevel Wavelet Decomposition >> x=analog(100,4,40,10000); >> xn=x+0.5*randn(size(x)); >> [C,L] = wavedec(xn,4,'db8'); % Do a multi-level analysis to four levels with the % Daubechies-8 wavelet >> A1 = wrcoef('a',C,L,'db8',1); % Reconstruct the approximations at various levels >> A2 = wrcoef('a',C,L,'db8',2); >> A3 = wrcoef('a',C,L,'db8',3); >> A4 = wrcoef('a',C,L,'db8',4); >> subplot(5,1,1),plot(xn),title('Original Signal') >> subplot(5,1,2),plot(A1),title('Reconstructed Approximation - Level 1') >> subplot(5,1,3),plot(A2),title(' Reconstructed Approximation - Level 2') >> subplot(5,1,4),plot(A3),title(' Reconstructed Approximation - Level 3') >> subplot(5,1,5),plot(A4),title(' Reconstructed Approximation - Level 4') Significant de-noising occurs with the level-4 approximation coefficients (Daubechies-8 wavelets)

Finding Signal Discontinuities >> x=analog(100,4,40,10000); >> x(302:305)=.25; >> [A,D]=dwt(x,'db8'); >> subplot(3,1,1),plot(x),title('Original Signal') >> subplot(3,1,2),plot(A),title('First Level Approximation') >> subplot(3,1,3),plot(D),title('First Level Detail') 3 sample discontinuity at sample 302 Discontinuity response in the 1 st level detail coefficients (sample 151 because of the 2X down-sampling) Daubechies-8 wavelets

Simple Signal Compression Using a Wavelet Approximation >> load leleccum >> x=leleccum; >> w = 'db3'; >> [C,L] = wavedec(x,4,w); >> A4 = wrcoef('a',C,L,'db3',4); >> A3 = wrcoef('a',C,L,'db3',3); >> A2 = wrcoef('a',C,L,'db3',2); >> A1 = wrcoef('a',C,L,'db3',1); >> a3 = appcoef(C,L,w,3); >> subplot(2,1,1),plot(x),axis([0,4000,100,600]) >> title('Original Signal') >> subplot(2,1,2),plot(A3),axis([0,4000,100,600]) >> title('Approximation Reconstruction at Level 3 Using the Daubechies-3 Wavelet') >> (length(a3)/length(x))*100 ans = The wavelet approximation at level-3 contains only 13 % of the original signal values because of the wavelet down-sampling, but still retains the important signal characteristics.

Compression by Thresholding >> load leleccum >> x=leleccum; >> w = 'db3'; % Specify the Daubechies-4 wavelet >> [C,L] = wavedec(x,4,w); % Multi-level decomposition to 4 levels. >> a3 = appcoef(C,L,w,3); % Extract the level 3 approximation coefficients >> d3 = detcoef(C,L,3); % Extract the level 3 detail coefficients. >> subplot(2,1,1), plot(a3),title('Approximation Coefficients at Level 3') >> subplot(2,1,2), plot(d3),title('Detail Coefficients at Level 3') These are the A3 and D3 coefficients for the signal. Many of the D3 coefficients could be “zeroed” without losing much signal information or power

Compression by Thresholding >> load leleccum >> x=leleccum; % Uncompressed signal >> w = 'db3'; % Set wavelet family >> n=3; % Set decomposition level >> [C,L] = wavedec(x,n,w); % Find the decomposition structure of x to level n using w. >> thr = 10; % Set the threshold value >> keepapp = 1; %Logical parameter = do not threshold approximation coefficients >> sorh='h'; % Use hard thresholding >> [xd,cxd,lxd, perf0,perfl2] =wdencmp('gbl',C,L,w,n,thr,sorh,keepapp); >> subplot(2,1,1), plot(x),title('Original Signal') >> subplot(2,1,2),plot(xd),title('Compressed Signal (Detail Thresholding)') >> perf0 % Percent of coefficients set to zero >> perfl2 % Percent retained energy in the compressed signal perf0 = perfl2 = In this compression 83% of the coefficients were set to zero, but 99% of the energy in the signal was retained.

Compression by Thresholding >> D1 = wrcoef('d',C,L,w,1); >> D2 = wrcoef('d',C,L,w,2); >> D3 = wrcoef('d',C,L,w,3); >> d1 = wrcoef('d',cxd,lxd,w,1); >> d2 = wrcoef('d',cxd,lxd,w,2); >> d3 = wrcoef('d',cxd,lxd,w,3); >> subplot(3,2,1),plot(D3),title('Original Detail - Levels 3 to 1') >> subplot(3,2,2),plot(d3),title('Thresholded Detail - Levels 3 to 1') >> subplot(3,2,3),plot(D2) >> subplot(3,2,4),plot(d2) >> subplot(3,2,5),plot(D1) >> subplot(3,2,6),plot(d1) Zeroing of coefficients by thresholding results in effective signal compression

Summary Wavelet processing is based on the idea of sub- band decomposition and coding. Wavelet “families” are characterized by the low- pass and high-pass filters used for decomposition and perfect reconstruction of signals. Typical applications of wavelet processing include elimination of noise, signal compression, and the identification of transient signal features.