ETCCDI climate extremes indices

Slides:



Advertisements
Similar presentations
ETCCDI approaches to development of the software
Advertisements

The ICA&D concept Robert Leander Royal Netherlands Meteorological Institute On behalf of the ECA&D project team Aryan van Engelen Else van den Besselaar.
Statistical downscaling of extreme precipitation and temperature – a systematic and rigorous inter-comparison of methods T. Schmith (1), C.M. Goodess (2)
Mitglied in der Helmholtz-Gemeinschaft WCS Server for CF-NetCDF An Overview AQCoP Meeting, August 2011 | M. Decker, M. Schultz, K. Hoijarvi, R.B. Husar.
© Crown copyright Met Office Practical Session Using the Regional Climate Projections.
1 A workshop on using R to select a sample for EHES Susie Cooper & Johan Heldal Statistics Norway.
Expert Team on Climate Change Detection and Indices (ETCCDI) started in 1999 jointly sponsored by CCl, CLIVAR and JCOMM.
EHarmony in Cloud Subtitle Brian Ko. eHarmony Online subscription-based matchmaking service Available in United States, Canada, Australia and United Kingdom.
EURANDOM & KNMI, May 2009 Analysis of extremes in a changing climate in support of informed decisions for adaptation
Statistical Downscaling in CORDEX II How to make it happen? And why? B. Timbal with inputs from W. Gutowski and T. Stephenson.
Preparing CMOR for CMIP6 and other WCRP Projects
Climate Predictability Tool (CPT)
C LIMATE INDICES OF KENTEN CLIMATOLOGY STATION, BMKG - SOUTH SUMATERA Presented by: Dara Kasihairani Staff of Observation and Information Kenten Climatology.
Analysis of observed temperature and precipitation extremes over South Asia Jayashree Revadekar Centre for Climate Change Research Indian Institute of.
Analysis of Extremes in Climate Science Francis Zwiers Climate Research Division, Environment Canada. Photo: F. Zwiers.
Artificial Neural Network using for climate extreme in La-Plata Basin: Preliminary results and objectives David Mendes * José Antonio Marengo * Chou Sin.
“Comparisons Between Observed And Modeled Precipitation And Temperature Extremes In South America During The XX Century (Ipcc 20c3m). Part I: Mean, Variability.
Overview of ETCCDI & Production of NCMPs. ETCCDI CCL/CLIVAR/JCOMM-Expert Team (ET) on Climate Change Detection and Indices (ETCCDI) + its predecessor.
Improvement of extreme climate predictions from dynamical climate downscaling Yang Gao 1, Joshua S. Fu 1, John B. Drake 1, Yang Liu 2, Jean-Francois Lamarque.
Page 1GMES - ENSEMBLES 2008 ENSEMBLES. Page 2GMES - ENSEMBLES 2008 The ENSEMBLES Project  Began 4 years ago, will end in December 2009  Supported by.
Metadata Creation with the Earth System Modeling Framework Ryan O’Kuinghttons – NESII/CIRES/NOAA Kathy Saint – NESII/CSG July 22, 2014.
Update on EURO-CORDEX and MED-CORDEX Filippo Giorgi Abdus Salam ICTP CORDEX-SAT1, Trieste, May, 2014.
Climate Predictability Tool (CPT) Ousmane Ndiaye and Simon J. Mason International Research Institute for Climate and Society The Earth.
Workshop on QC in Derived Data Products, Las Cruces, NM, 31 January 2007 ClimDB/HydroDB Objectives Don Henshaw Improve access to long-term collections.
Climate data sets: introduction two perspectives: A. What varieties of data are available? B. What data helps you to identify...
Kuala Lumpur, Malaysia, 8th-11th November 2012
STARDEX STAtistical and Regional dynamical Downscaling of EXtremes for European regions A project within the EC 5th Framework Programme EVK2-CT
Photo: F. Zwiers Assessing Human Influence on Changes in Extremes Francis Zwiers, Climate Research Division, Environment Canada Acknowledgements – Slava.
National Climate Monitoring Products Andrew Watkins and John Kennedy (updated 28/4/2014)
European Climate Assessment CCl/CLIVAR ETCCDMI meeting Norwich, UK November 2003 Albert Klein Tank KNMI, the Netherlands.
Outline Comparison of Excel and R R Coding Example – RStudio Environment – Getting Help – Enter Data – Calculate Mean – Basic Plots – Save a Coding Script.
Simulations of present climate temperature and precipitation episodes for the Iberian Peninsula M.J. Carvalho, P. Melo-Gonçalves and A. Rocha CESAM and.
WFM 6311: Climate Risk Management © Dr. Akm Saiful Islam WFM 6311: Climate Change Risk Management Akm Saiful Islam Lecture-7:Extereme Climate Indicators.
Climate Predictability Tool (CPT) Ousmane Ndiaye and Simon J. Mason International Research Institute for Climate and Society The Earth.
Evaluation and simulation of global terrestrial latent heat flux by merging CMIP5 climate models and surface eddy covariance observations Yunjun Yao 1,
Coordinated CESM/CanESM Large Ensembles for the CanSISE Community
A Computationally Efficient Platform to Examine the Efficacy of Regional Downscaling Methods AGU Fall Meeting Abstract GC12C-04 AGU Fall Meeting Abstract.
Data formats and requirements in CMIP6: the climate-prediction case Pierre-Antoine Bretonnière EC-Earth meeting, Reading, May 2015.
Climate Extremes PRECIS Workshop Tanzania Meteorological Agency, 29 th June – 3 rd July 2015.
(Indices for) Climate Extremes RA VI CLIPS workshop Erfurt, Germany, June 2003 Albert Klein Tank KNMI, the Netherlands Acknowledgement: ECA&D-participants.
Climate Analysis Section, CGD, NCAR, USA Detection and attribution of extreme temperature and drought using an analogue-based dynamical adjustment technique.
WCRP Extremes Workshop Sept 2010 Detecting human influence on extreme daily temperature at regional scales Photo: F. Zwiers (Long-tailed Jaeger)
Welcome to the PRECIS training workshop
Robust Simulation of Future Hydrologic Extremes in BC under Climate Change Arelia T. Werner Markus A. Schnorbus and Rajesh R. Shrestha.
“Building the daily observations database for the European Climate Assessment” KNMI.nl CLARIS meeting, 7 july 2005.
Copernicus Observations Requirements Workshop, Reading Requirements from agriculture applications Nadine Gobron On behalf Andrea Toreti & MARS colleagues.
ET-NCMP meeting, Marrakesh September 2015 Climate monitoring aspects within OPACE II ToRs and expected outcomes from ET- NCMP Fatima Driouech, OPACE.
The ENSEMBLES high- resolution gridded daily observed dataset Malcolm Haylock, Phil Jones, Climatic Research Unit, UK WP5.1 team: KNMI, MeteoSwiss, Oxford.
The HDF Group January 8, ESIP Winter Meeting Data Container Study: HDF5 in a POSIX File System or HDF5 C 3 : Compression, Chunking,
Indices versus Data Indices are information derived from data Indices are information derived from data Proxy for data Proxy for data More readily released.
WMO Data Rescue: Review of relevant outcomes of WMO constituent body sessions; Recent WMO activities Peer Hechler, Omar Baddour WMO; Data Management Applications.
ET-NCMP Palm Plaza Hotel, Marrakech 15 September 2015.
The ETCCDI workshops: A model for ET-CRSCI? Lisa Alexander Climate Change Research Centre University of New South Wales Sydney, Australia Ist meeting CCl.
Homogenization of daily data series for extreme climate index calculation Lakatos, M., Szentimey T. Bihari, Z., Szalai, S. Meeting of COST-ES0601 (HOME)
A41I-0105 Supporting Decadal and Regional Climate Prediction through NCAR’s EaSM Data Portal Doug Schuster and Steve Worley National Center for Atmospheric.
Advanced Programing practices
An Introduction to the Climate Change Explorer Tool: Locally Downscaled GCM Data for Thailand and Vietnam Greater Mekong Sub-region – Core Environment.
Progress on NA61/NA49 software virtualisation Dag Toppe Larsen Wrocław
Change in Flood Risk across Canada under Changing Climate
RCM workshop, Meteo Rwanda, Kigali
International Climate Assessment & Dataset Peter Siegmund, Albert Klein Tank, Ge Verver KNMI, Netherlands ET DARE meeting, WMO, 3-6 November 2014.
NMME Phase-II Data: Status
Community Information Toolkit
Code is on the Website Outline Comparison of Excel and R
Expert Team on Climate Change Detection and Indices (ETCCDI)
National Climate Monitoring Products
Spatial Statistics A 15 minute Tour….
Beyond
Presentation transcript:

ETCCDI climate extremes indices Jana Sillmann January, 23rd 2015

Expert Team on Climate Change Detection and Indices Joint WMO CLIVAR/CCl/JCOMM/GEWEX Expert Team on Climate Change Detection and Indices Develop indices relevant to climate change monitoring and detection Create observational dataset(s) of indices with (ideally) global coverage (www.climdex.org) Indices are: Statistically robust Easy to understand Globally valid Enable comparison of modeled data and observations http://www.clivar.org/panels-and-working-groups/etccdi/etccdi.php

ETCCDI indices http://etccdi.pacificclimate.org/list_27_indices.shtml

ETCCDI percentile threshold indices TN10p, TX10p Percentage of days when TN (orTX) < 10th percentile: Let TNij be the daily minimum temperature on day i in period j and let TNin10 be the calendar day 10th percentile centred on a 5-day window for the base period 1961-1990. The percentage of time for the base period is determined where: TNij < TNin10 TN90p, TX90p Percentage of days when TN (or TX) > 90th percentile: Let TNij be the daily minimum temperature on day i in period j and let TNin90 be the calendar day 90th percentile centred on a 5-day window for the base period 1961-1990. The percentage of time for the base period is determined where: TNij > TNin90 To avoid possible inhomogeneity across the in-base and out-base periods, the calculation for the base period (1961-1990) requires the use of a bootstrap processure. Details are described in Zhang et al. (2005) . http://etccdi.pacificclimate.org/docs/Zhangetal05JumpPaper.pdf

ETCCDI Extremes Indices Calculation Rclimdex  used at regional workshops for station data Fclimdex  adapted for climate model data/faster processing http://etccdi.pacificclimate.org/software.shtml climdex.pcic.R  open source R package for large datasets http://cran.r-project.org/web/packages/climdex.pcic/index.html

ETCCDI Extremes Indices Archive (CMIP3/CMIP5) http://www.cccma.ec.gc.ca/data/climdex/

ETCCDI Extremes Indices Calculation Preparation Anne installed all necessary R packages on sverdrupt e.g., climdex.pcic_0.7-2.tar.gz, ncdf4_1.8.tar.gz, ncdf4.helpers_0.2-5.tar.gz, PCICt_0.5-4.tar.gz, udunits2_0.6.tar.gz, udunits-2.1.24.tar.gz Have your data ready i.e., input and output directory

ETCCDI Extremes Indices Calculation Preparation What you need to pay attention to: Format of Data Files  needs to follow CMIP5 convention (name, attributes, etc.) variable_timeinterval_model_experiment_ensemblemember_startday_endday.nc Example: "pr_day_CESM1-CAM4_CO2BB1850_ens1_00310101-00601231.nc” Base Period  make sure it is within data range (standard base period for observation based indices 1961-1990)

compute_index_on_gcm_improved.r ETCCDI Extremes Indices Calculation Preparation What you also need: The magic R script that does everything! compute_index_on_gcm_improved.r Or write your own code…

ETCCDI Extremes Indices Calculation Preparation Read R package description: http://cran.r-project.org/web/packages/climdex.pcic/index.html In R > getAnywhere(“climdex.cdd”)

ETCCDI Extremes Indices Calculation ###calculate indices library(climdex.pcic.ncdf) Loading required package: PCICt > input.files <- > c("pr_day_CESM1-CAM4_CO2BB1850_ens1_00310101-00601231.nc", > "tasmin_day_CESM1-CAM4_CO2BB1850_ens1_00310101-00601231.nc", > "tasmax_day_CESM1-CAM4_CO2BB1850_ens1_00310101-00601231.nc") > author.data <- list(institution="Center for International Climate and > Environmental Research - Oslo, Norway", institution_id="CICERO") > create.indices.from.files(input.files, > "/div/enso/d12/janasi/CESM1-CAM4/indices/", input.files[1], > author.data, base.range=c(1850,1879), parallel=8, max.vals.millions=70 > ) Creating cluster of 8 nodes of type SOCK Finished computing indices ###calculate thresholds > library(climdex.pcic.ncdf) > c("pr_day_CanESM2_historical_r1i1p1_18500101-20051231.nc", > "tasmax_day_CanESM2_historical_r1i1p1_1850101-20051231.nc", > "tasmin_day_CanESM2_historical_r1i1p1_1850101-20051231.nc") > "/div/ferrel/d2-3/cmip5/janasi/testground/indices/", input.files[1], > author.data, base.range=c(1961,1990), parallel=16, > max.vals.millions=70 ) Creating cluster of 16 nodes of type SOCK Finished computing indices > create.thresholds.from.file(input.files, "threshholds_CanESM2.nc", > author.data, base.range=c(1961,1990), parallel=FALSE, Finished computing thresholds > input.files <- c("pr_day_CanESM2_rcp85_r1i1p1_20060101-21001231.nc", > "tasmax_day_CanESM2_rcp85_r1i1p1_20060101-21001231.nc", > "tasmin_day_CanESM2_rcp85_r1i1p1_20060101-21001231.nc") > author.data, base.range=c(1961, 1990), parallel=16, > max.vals.millions=70, thresholds.files="threshholds_CanESM2.nc") ETCCDI Extremes Indices Calculation ###calculate indices library(climdex.pcic.ncdf) Loading required package: PCICt > input.files <- > c("pr_day_CESM1-CAM4_CO2BB1850_ens1_00310101-00601231.nc", > "tasmin_day_CESM1-CAM4_CO2BB1850_ens1_00310101-00601231.nc", > "tasmax_day_CESM1-CAM4_CO2BB1850_ens1_00310101-00601231.nc") > author.data <- list(institution="Center for International Climate and > Environmental Research - Oslo, Norway", institution_id="CICERO") > create.indices.from.files(input.files, > "/div/enso/d12/janasi/CESM1-CAM4/indices/", input.files[1], > author.data, base.range=c(1850,1879), parallel=8, max.vals.millions=70 > ) Creating cluster of 8 nodes of type SOCK Finished computing indices

ETCCDI Extremes Indices Calculation ###calculate thresholds > library(climdex.pcic.ncdf) Loading required package: PCICt > input.files <- > c("pr_day_CanESM2_historical_r1i1p1_18500101-20051231.nc", > "tasmax_day_CanESM2_historical_r1i1p1_1850101-20051231.nc", > "tasmin_day_CanESM2_historical_r1i1p1_1850101-20051231.nc") > author.data <- list(institution="Center for International Climate and > Environmental Research - Oslo, Norway", institution_id="CICERO") > create.thresholds.from.file(input.files, "threshholds_CanESM2.nc", > author.data, base.range=c(1961,1990), parallel=FALSE, > max.vals.millions=70 ) Finished computing thresholds

ETCCDI Extremes Indices Calculation ###calculate indices with new thresholds > input.files <- c("pr_day_CanESM2_rcp85_r1i1p1_20060101-21001231.nc", > "tasmax_day_CanESM2_rcp85_r1i1p1_20060101-21001231.nc", > "tasmin_day_CanESM2_rcp85_r1i1p1_20060101-21001231.nc") > create.indices.from.files(input.files, > "/div/ferrel/d2-3/cmip5/janasi/testground/indices/", input.files[1], > author.data, base.range=c(1961, 1990), parallel=16, > max.vals.millions=70, thresholds.files="threshholds_CanESM2.nc") Creating cluster of 16 nodes of type SOCK Finished computing indices

ETCCDI Extremes Indices Calculation Output [janasi@hadley r1i1p1]$ ll total 1678136 -rw-rw-r-- 1 janasi janasi 8638672 Nov 3 09:01 altcddETCCDI_yr_NorESM1-M_historical_r1i1p1_1850-2005.nc -rw-rw-r-- 1 janasi janasi 8638672 Nov 3 09:01 altcsdiETCCDI_yr_NorESM1-M_historical_r1i1p1_1850-2005.nc -rw-rw-r-- 1 janasi janasi 8638672 Nov 3 09:01 altcwdETCCDI_yr_NorESM1-M_historical_r1i1p1_1850-2005.nc -rw-rw-r-- 1 janasi janasi 8638672 Nov 3 09:01 altwsdiETCCDI_yr_NorESM1-M_historical_r1i1p1_1850-2005.nc -rw-rw-r-- 1 janasi janasi 8638664 Nov 3 09:01 cddETCCDI_yr_NorESM1-M_historical_r1i1p1_1850-2005.nc -rw-rw-r-- 1 janasi janasi 8638656 Nov 3 09:01 csdiETCCDI_yr_NorESM1-M_historical_r1i1p1_1850-2005.nc -rw-rw-r-- 1 janasi janasi 8638664 Nov 3 09:02 cwdETCCDI_yr_NorESM1-M_historical_r1i1p1_1850-2005.nc -rw-rw-r-- 1 janasi janasi 103567752 Nov 3 09:02 dtrETCCDI_mon_NorESM1-M_historical_r1i1p1_185001-200512.nc -rw-rw-r-- 1 janasi janasi 8638632 Nov 3 09:02 dtrETCCDI_yr_NorESM1-M_historical_r1i1p1_1850-2005.nc -rw-rw-r-- 1 janasi janasi 8638608 Nov 3 09:02 fdETCCDI_yr_NorESM1-M_historical_r1i1p1_1850-2005.nc -rw-rw-r-- 1 janasi janasi 8638616 Nov 3 09:02 gslETCCDI_yr_NorESM1-M_historical_r1i1p1_1850-2005.nc -rw-rw-r-- 1 janasi janasi 8638608 Nov 3 09:02 idETCCDI_yr_NorESM1-M_historical_r1i1p1_1850-2005.nc -rw-rw-r-- 1 janasi janasi 8638636 Nov 3 09:02 prcptotETCCDI_yr_NorESM1-M_historical_r1i1p1_1850-2005.nc -rw-rw-r-- 1 janasi janasi 8638648 Nov 3 09:02 r10mmETCCDI_yr_NorESM1-M_historical_r1i1p1_1850-2005.nc -rw-rw-r-- 1 janasi janasi 8638648 Nov 3 09:02 r1mmETCCDI_yr_NorESM1-M_historical_r1i1p1_1850-2005.nc -rw-rw-r-- 1 janasi janasi 8638648 Nov 3 09:02 r20mmETCCDI_yr_NorESM1-M_historical_r1i1p1_1850-2005.nc -rw-rw-r-- 1 janasi janasi 8638732 Nov 3 09:02 r95pETCCDI_yr_NorESM1-M_historical_r1i1p1_1850-2005.nc -rw-rw-r-- 1 janasi janasi 8638732 Nov 3 09:02 r99pETCCDI_yr_NorESM1-M_historical_r1i1p1_1850-2005.nc -rw-rw-r-- 1 janasi janasi 103567748 Nov 3 09:03 rx1dayETCCDI_mon_NorESM1-M_historical_r1i1p1_185001-200512.nc

ETCCDI Extremes Indices Calculation