Cavity ring down spectroscopy on C 6 H 5 radical in a pulsed supersonic jet expansion discharge Keith Freel Dr. Michael Heaven Dr. M.C. Lin Dr. Joonbum.

Slides:



Advertisements
Similar presentations
Investigating excited state dynamics in 7-azaindole Nathan Erickson, Molly Beernink, and Nathaniel Swenson 1.
Advertisements

Spectroscopy With Polarized Light: Polarized Matrix Infrared Spectra of Cyclopentadieneone THOMAS K. ORMOND, ADAM M. SCHEER, G. BARNEY ELLISON, Department.
Is the Equilibrium Structure of BeOH Linear or Bent? Kyle Mascaritolo Dr. Michael Heaven.
Gabriel M. P. Just, Patrick Rupper, Dmitry G. Melnik and Terry A. Miller EXPERIMENTAL PROGRESS FOR HIGH RESOLUTION CAVITY RINGDOWN SPECTROSCOPY OF JET-
Rotationally-resolved infrared spectroscopy of the polycyclic aromatic hydrocarbon pyrene (C 16 H 10 ) using a quantum cascade laser- based cavity ringdown.
Gabriel M. P. Just, Patrick Rupper, Dmitry G. Melnik and Terry A
1 OBSERVATION OF TWO  =0 + EXCITED ELECTRONIC STATES IN JET-COOLED LaH Suresh Yarlagadda Ph.D Student Homi Bhabha National Institute Bhabha Atomic Research.
23 June Performance of a Continuous Supersonic Expansion Discharge Source Evaluated by Laser-Induced Fluorescence Spectroscopy.
The Spectroscopy of UF and UF + Joshua Bartlett, Ivan Antonov, Dr. Michael Heaven Emory University, Department of Chemistry 1515 Dickey Drive, Atlanta.
D.L. KOKKIN, N.J. REILLY, J.A. JOESTER, M. NAKAJIMA, K. NAUTA, S.H. KABLE and T.W. SCHMIDT Direct Observation of the c State of C 2 School of Chemistry,
HIGH RESOLUTION INFRARED SPECTROSCOPY OF N 2 O-C 4 H 2 AND CS 2 −C 2 D 2 DIMERS MAHDI YOUSEFI S. SHEYBANI-DELOUI JALAL NOROOZ OLIAEE BOB MCKELLAR NASSER.
Laser Spectroscopy Group Department of Physics NUI - University College Cork Cork, Ireland.
Terrance J. Codd*, John Stanton†, and Terry A. Miller* * The Laser Spectroscopy Facility, Department of Chemistry and Biochemistry The Ohio State University,
3 – 3.5  MIR CRDS 1 – 1.5  NIR CRDS  m -HV O2O2 N2N2 OH X a A B X X ~
Masters Course: Experimental Techniques Detection of molecular species (with lasers) Techniques Direct absorption techniques Cavity Ring Down Cavity Enhanced.
Ivan O. Antonov, Michael C. Heaven Emory University, Department of Chemistry 1515 Dickey Drive, Atlanta GA
Evidence of Radiational Transitions in the Triplet Manifold of Large Molecules Haifeng Xu, Philip Johnson Stony Brook University Trevor Sears Brookhaven.
Kinetic Investigation of Collision Induced Excitation Transfer in Kr*(4p 5 5p 1 ) + Kr and Kr*(4p 5 5p 1 ) + He Mixtures Md. Humayun Kabir and Michael.
High Resolution Measurements and Electronic Structure Calculations of a Diazanaphthalene: [1,6]-naphthyridine. Sébastien Gruet, Manuel Goubet, Olivier.
Laser spectroscopy of Iridium monophosphide H. F. Pang, Y. Xia, A. W. Liu and A. S-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam.
OBSERVATION OF VIBRATIONALLY HOT CH 2 CHO IN THE 351 NM PHOTODISSOCIATION OF XCH 2 CH 2 ONO (X=F,Cl,Br,OH) Rabi Chhantyal-Pun, Ming-Wei Chen, Dianping.
Ultrafast 2D Quantum Switching of p‑Electron Rotations
Maria Eugenia Sanz, Carlos Cabezas, Santiago Mata, José L. Alonso The Rotational Spectrum of Tryptophan.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
Novel Applications of a Shape Sensitive Detector 2: Double Resonance Amanda Shirar Purdue University Molecular Spectroscopy Symposium June 19, 2008.
1 Ab initio and Infrared Studies of Carbon Dioxide Containing Complex Zheng Su and Yunjie Xu Department of Chemistry, University of Alberta, Edmonton,
Pulsed-jet discharge matrix isolation and computational study of Bromine atom complexes: Br---BrXCH 2 (X=H,Cl,Br) OSU 66 th International Symposium on.
Electronic Transition of Ruthenium Monoxide Na Wang, Y. W. Ng and A. S.-C. Cheung Department of Chemistry The University of Hong Kong.
The 66 th International Symposium on Molecular Spectroscopy, June 2010 Fang Wang,Anh Lee and Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University,
1 Infrared Spectroscopy of Ammonium Ion MG03: Sub-Doppler Spectroscopy of ND 3 H + Ions in the NH Stretch Mode MG04: Infrared Spectroscopy of Jet-cooled.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
SPECTROSCOPY OF AND PHOTOINDUCED ELECTRON TRANSFER IN THE COMPLEXES OF C 2 H 4 WITH I AND I 2 Lisa George, Aimable Kalume, and Scott A. Reid Department.
Cavity Ringdown Spectroscopy of the A 2 A 2 - B 2 B 2 Vibronically Mixed Excited States of the Benzyl Radical and the 1 2 A 2 ← X 2 B 1 Transition of the.
Laboratory of Molecular Spectroscopy, Pusan National University, Pusan, Republic of Korea Spectroscopic identification of isomeric trimethylbenzyl radicals.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Electronic transitions of Yttrium Monoxide Allan S.-C. Cheung, Y. W. Ng, Na Wang and A. Clark Department of Chemistry University of Hong Kong OSU International.
Breaking the Symmetry in Methyl Radical: High resolution IR spectroscopy of CH 2 D Melanie Roberts Department of Chemistry and Biochemistry, JILA University.
Cavity ring down spectroscopy 14 February 2012 CE 540.
Structure and excited-state dynamics of the S1 B3u‐S0 Ag states of pyrene through high-resolution laser spectroscopy Yasuyuki Kowaka We study the vibrational,rotational.
Rotational and Vibrational Energy Transfer from the First Overtone Stretch of Acetylene Keith Freel Jiande Han Michael C. Heaven.
FIRST HIGH RESOLUTION INFRARED SPECTROSCOPY OF GAS PHASE CYCLOPENTYL RADICAL: STRUCTURAL AND DYNAMICAL INSIGHTS FROM THE LONE CH STRETCH Melanie A. Roberts,
CH 3 D Near Infrared Cavity Ring-down Spectrum Reanalysis and IR-IR Double Resonance S. Luna Yang George Y. Schwartz Kevin K. Lehmann University of Virginia.
Triplet-Singlet Mixing in Si­ 3 : the 1 A A 2 Transition Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy 68.
Structure in the Visible Absorption Bands of Jet-Cooled Phenyl Peroxy Radicals Michael N. Sullivan *, Keith Freel, J. Park, M.C. Lin, and Michael C. Heaven.
Mohammed Gharaibeh, Fumie X. Sunahori, and Dennis J. Clouthier Department of Chemistry, University of Kentucky Riccardo Tarroni Dipartimento di Chimica.
Development of a cavity ringdown spectrometer for measuring electronic states of Be clusters JACOB STEWART, MICHAEL SULLIVAN, MICHAEL HEAVEN DEPARTMENT.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
HIGH RESOLUTION SPECTROSCOPY OF THE B 2 A 1 - X 2 A 1 TRANSITION OF CaCH 3 and SrCH 3 P. M. SHERIDAN, M. J. DICK, J. G. WANG AND P. F. BERNATH University.
Adam J. Fleisher Philip J. Morgan David W. Pratt Department of Chemistry University of Pittsburgh Non-symmetric push-pull molecules in the gas phase: High.
Ramya Nagarajan, Jie Yang and Dennis J. Clouthier A spectroscopic study of the linear-bent electronic transitions of jet-cooled HBCl and BCl 2 And The.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
INFRARED AND ULTRAVIOLET SPECTROSCOPY OF JET-COOLED 2-BENZYLPHENOL: I STRUCTURE AND LARGE-AMPLITUDE TORSIONAL MOTION CHIRANTHA P. RODRIGO, CHRISTIAN W.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
OPTICAL-OPTICAL DOUBLE RESONANCE SPECTROSCOPY OF SrOH: THE 2 Π(000) – 2 Π(000) AND THE 2 Σ + (000) – 2 Π 1/2 (000) TRANSITIONS J.-G. WANG, P. M. SHERIDAN,
High-resolution mid-infrared spectroscopy of deuterated water clusters using a quantum cascade laser- based cavity ringdown spectrometer Jacob T. Stewart.
Spectroscopy of the Low- Energy States of BaO + Joshua H. Bartlett, Robert A. VanGundy, Michael C. Heaven 70 th International Symposium on Molecular Spectroscopy.
Laser spectroscopic study of CaH in the B 2 Σ + and D 2 Σ + state Kyohei Watanabe, Kanako Uchida, Kaori Kobayashi, Fusakazu Matsushima, Yoshiki Moriwaki.
& DETECTION AND CHARACTERIZATION OF THE STANNYLENE (SnH2) FREE RADICAL.
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
The exotic excited state behavior of 3-phenyl-2-propynenitrile
Michael N. Sullivan*, Jacob T. Stewart†, Michael C. Heaven*
UV Spectroscopy of 3-phenyl-2-propynenitrile
Timothy C. Steimle , T. Maa, S. Muscarella, and Damian Kokkin
Tokyo Univ. Science Mitsunori Araki, Yuki Matsushita, Koichi Tsukiyama
Electronic Structure of CaOCa Via Laser Induced Fluorescence (LIF)
Bob Grimminger and Dennis Clouthier
(Kobe Univ. ) Takumi Nakano, Ryo Yamamoto, Shunji Kasahara
Spectroscopy, Structure, and Ionization Energy of BeOBe
OBSERVATION OF LEVEL-SPECIFIC PREDISSOCIATION RATES IN S1 ACETYLENE
Presentation transcript:

Cavity ring down spectroscopy on C 6 H 5 radical in a pulsed supersonic jet expansion discharge Keith Freel Dr. Michael Heaven Dr. M.C. Lin Dr. Joonbum Park 1

Phenyl C 6 H 5 Combustion (PAH Formation) Astrophysics Environmental Impact Computational Benchmark Small Absorption Coefficient (in vis region) 2

Previous Studies 3 Gas Phase Absorption ( nm) [Porter & Ward] 2 B A 1 n   Electron Spin Resonance [Bennett, Kasai] C 2V symmetry Unpaired electron in non-bonding  -orbital Matrix Isolation Studies [Friderichesen], [Radziszewski], [Pacansky], [Miller], [Engert], [Park] IR and UV Spectroscopy [Tonokura] Recent Gas Phase Studies Electronic Spectroscopy by CRDS [Lin],[Tonokura] Microwave Spectroscopy [McMahon] High Resolution IR Spectroscopy [Sharp]

Excimer Pumped Dye Laser Mirror Curtains Valves/Discharge PMT Computer Cavity Mirror Vacuum Chamber Three Pulsed Solenoid Valves 1 1. Ground Plate 2. Phenolic Insulator 3. High Voltage Jaw 2 3 Experimental Setup Radical Production – Electrical Discharge – Jet Expansion Cooling Radical Detection – Cavity Ringdown Spectroscopy [Maier], [Miller], [Biennier] 4

Cavity Ring-Down Spectroscopy Loss = (2  l )(tc/2L) Total loss = [(1-R)+  l ] (tc/L) PMT RR l e -1 x 100 = 36.8   w/ abs  12  s   empty  18  s PMT R R Absorbing Sample Added Empty Cavity ~ 5000 passes at 18  s (path length from 0.10 m to 500 m) 5  = 1.16x10 -5 cm -1

PGopher Simulation CRD Spectrum of C 2 6 Band Origin nm Rotational Constant(s) B”= cm -1 B’ = cm -1 Linewidth 0.05 cm -1 Rotational Temperature 100 K Vibrational Temperature

Long range scan 7 [Huang]

Simulation of C 2 Swan Band T rot = 30 K T vib ~ 5,000 K 8 [PGOPHER] Gaussian linewidth: 0.05 cm -1

1 2 B A 1 origin band Origin: (3) A: 0.198(1) B: 0.185(1) C: (5) Temp (K): 26.6 B3LYP/aug-cc-pVDZ [Tonokura] A’: B’: C’: A”: (10) B”: (7) MW spec [McMahon] C”: (20) Gaussian linewidth: 0.05 cm -1

Molecular Constants for the Phenyl Radical 10 TransitionBand origin (cm -1 ) G( ' ) (cm -1 ) A'(cm -1 )B'(cm -1 )C'(cm -1 ) Excited state lifetime(ns) (3)00.198(1)0.185(1)0.0957(5)> (3)571.16(6)0.197(1)0.185(1)0.0959(5)> (3)896.12(6)0.197(1)0.185(1)0.0957(5)0.10(3) 1-  errors are given in parenthesis. Equilibrium rotational constants from TDDFT calculations [Tonokura]: A'=0.1964, B'=0.1864, C'= cm -1

2 B A 1 ( ) Q branch Lorentzian: cm -1 Gaussian: 0.05 cm -1 Lifetime = 100 ± 30 ps 11

TransitionBand origin (cm -1 ) G( ' ) (cm -1 ) A'(cm -1 )B'(cm -1 )C'(cm -1 ) Excited state lifetime(ns) (3)00.198(1)0.185(1)0.0957(5)> (3)571.16(6)0.197(1)0.185(1)0.0959(5)> (3)896.12(6)0.197(1)0.185(1)0.0957(5)0.10(3) Molecular Constants for the Phenyl Radical  errors are given in parenthesis. Equilibrium rotational constants from TDDFT calculations [Tonokura]: A'=0.1964, B'=0.1864, C'= cm -1

13 Oscillator Strength [Kim] =   rad = 2.8  s (CASSCF(7,13)/6-311+G**) Fluorescence quantum yield ~ 3.4x B 1  X 2 A 1 - Energy Transfer For 1 2 B 1 ( 9 = 1) the lifetime was 100 ns 21,000 cm -1 26,600 cm -1 [Lin], [Negru]

The Optimized Geometry X2A1X2A1 12B112B1 A: (10) B: (7) C: (20) Tonokura B3LYP/aug-cc-pVDZ A: B: C: Tonokura B3LYP/aug-cc-pVDZ A: B: C: MW Spec [McMahon] A: B: C: Our Values

Conclusions Detection of discharge generated phenyl radical by CRDS in a jet expansion. Measured G( ' ) and rotational constants for three fundamental modes. Excited state lifetime is about 100 ps at 9 =1. Rotational constants match best with constants from DFT calculation by Tonokura et al. 15

Thanks to: Group Members and Colleagues: Dr Jeremy Merritt, Dr Humayun Kabir, Dr Beau Barker, Ivan Antonov, Dr Jiande Han, Kyle Mascaritolo, Luis Mendoza, Dr Shucheng Xu Cody Anderson at the Emory Machine Shop Thank you for listening! 16

References 17 Porter G.; Ward B. Proc. R. Soc. London, Ser. A 1965, 287, 457. J.E. Bennett, B. Mile, A. Thomas, Chem. Comm. London (1965) 265. J.E. Bennett, B. Mile, A. Thomas, Proc. Royal Soc. London, Series A: Mathemat. Phys. Eng. Sci. 293 (1966) 246. P.H. Kasai, E. Hedaya, E.B. Whipple, J. Am. Chem. Soc. 91 (1969) J. Pacansky, J. Bargon, J. Am. Chem. Soc. 97 (1975) J.H. Miller, L. Andrews, P.A. Lund, P.N. Schatz, J. Chem. Phys. 73 (1980) J.G. Radziszewski, Chem. Phys. Lett. 301 (1999) 565. J.G. Radziszewski, M. Gil, A. Gorski, J. Spanget-Larsen, J. Waluk, B.J. Mroz, J. Chem. Phys. 115 (2001) J.M. Engert, B. Dick, Appl. Phys. B Lasers Opt. 63 (1996) 531. A.V. Friderichsen, J.G. Radziszewski, M.R. Nimlos, P.R. Winter, D.C. Dayton, D.E. David, G.B. Ellison, J. Am. Chem. Soc. 123 (2001) J. Park, S. Burova, A.S. Rodgers, M.C. Lin, Chem. Phys. Process Combust. (1999) 308.

18

19

Extra Geometry From: 2 B 1 (v’=9) Ring Growth A: B: C: A: B: C: Factor Dev = dA+dB+dC Dev 20

Random test using ground state Gaussview Structure to B3LYP structure A: (10) B: (7) C: (20) A: B: C: B3LYP MW Spec  ~ Å maximum deviation Changing only three C atoms 10 6 changes = 100 positions per atom= Å step size A 0.01 Å change in a C changes roto by max All C-C bonds ~ 1.4 Å 1)Change Geometry 2)Calculate A,B,C 3)Compare with Actual (B3LYP) ~120 21

~ 179 +/- 11 out of one million C1C2C3 A1 A2 A3A C1 C C3 A1 A2 A3 A4 C1 = / C2 = / C3 = / A1 = / A2 = / A3 = / A4 = / From 5 trials…. 22

C1 C C3 A1 A2 A3 A4 C1 = / C2 = / C3 = / A1 = / A2 = / A3 = / A4 = / From 5 trials…. 2 B 1 (v’=0) A 1 (v”=0) C1 = / C2 = / C3 = / A1 = / A2 = / A3 = / A4 = / From 5 trials…. ~ 179 +/- 11 out of one million~ 326 +/- 7 out of one million 23