Relations between crystal structures

Slides:



Advertisements
Similar presentations
Identify how elements are arranged on the Periodic Table. F Fluorine atu 9 How many particles in the nucleus? Protons? Neutrons? Electrons? Now.
Advertisements

Unit 3 Part 2 The Periodic Table ICP Mr. Patel SWHS.
Face centered cubic, fcc Atoms are arranged in a periodic pattern in a crystal. The atomic arrangement affects the macroscopic properties of a material.
Chapter 7 periodic trends
One-qusiparticle excitations of the heavy and superheavy nuclei A. Parkhomenko and and A.Sobiczewski Institute for Nuclear Studies, ul. Hoża 69, Warsaw.
Single particle properties of heavy and superheavy nuclei. Aleksander Parkhomenko.
Copyright 2011 CreativeChemistryLessons.comCreativeChemistryLessons.comRemember! Metals LOSE Electrons (CATIONS)Metals LOSE Electrons (CATIONS) Non-Metals.
The Nature of Molecules
Periodic Table – Filling Order
THE PERIODIC TABLE.
Neutron (no charge) Hydrogen 1 Proton 1 Electron Oxygen 8 Protons 8 Neutrons 8 Electrons a. b. proton (positive charge) electron (negative charge) Copyright.
Development of the Periodic Table. Mendeleev’s Periodic Table "...if all the elements be arranged in order of their atomic weights a periodic repetition.
The phase problem in protein crystallography. The phase problem in protein crystallography.
Binary Compounds Metals (variable oxidation) + Nonmetals.
Metals, Nonmetals, Metalloids. Metals and Nonmetals Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca.
CH. 2 atomic models electronic configuration oxidation numbers
Unit 4 The Periodic Table Chemistry I Mr. Patel SWHS.
Periodic Table of Elements. gold silver helium oxygen mercury hydrogen sodium nitrogen niobium neodymium chlorine carbon.
Chemical Families. Groups of Elements   Lanthanides Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl.
Trends of the Periodic Table
Periodic Table Of Elements
Metals, Nonmetals, Metalloids
s p d (n-1) f (n-2) 6767 Periodic Patterns 1s1s1s1s 2s2s2s2s 3s3s3s3s 4s4s4s4s 5s5s5s5s 6s6s6s6s 7s7s7s7s 3d3d3d3d 4d4d4d4d 5d5d5d5d 6d6d6d6d 1s1s1s1s.
Organization of The Periodic Table Mrs. Russotto.
Bellwork, Fri. Sept. 14 Which element is LEAST likely to combine with another element to form a molecule? -Chlorine (Cl), a halogen -Iron (Fe), a metal.
Modern Periodic Table Objective:
Electron Configuration Filling-Order of Electrons in an Atom.
Alkali Metals, Group 1 H N OF Cl Br I Li Na K Fr Be Mg Ca Ra Sc Ac He Ne Ar Kr Rn Ti V Cr Mn Fe Co Ni Cu ZnGa Ge As Se Rb Sr Y Xe Zr Nb Mo Tc Ru Rh Pd.
Electron Configuration
1 Hydro gen 1 3 Li Lithi um 2 1 Na Sodiu m 3 1919 K Potas sium 4 3737 Rb Rubid ium 5 5 Cs Cesiu m 6 8787 Fr Franc ium 7 4 Be Beryl lium 1212 Mg Magne sium.
D x 2 – y 2 Lanthanides Actinides G block Inrt P x P y P z D x y D x z D y z D z 2 New periodic table of elements Nodal point.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Periodic Table of Elements
What are characteristics for: – Metal – Nonmetal – Metalloid.
Chapter 6 Metals, Nonmetals, Metalloids. Metals and Nonmetals Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar.
Trends of the Periodic Table. Electronegativity ElectronegativityyElectronegativityy.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Electron Configuration
Periodic Table of Elements
TOPIC 0C: Atomic Theory.
The Periodic Table
1.7 Trends in the Periodic Table
Introduction To Chemistry
1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si
Chemeketa Community College
Periodensystem Biomaterials Research - Manfred Maitz H He Li Be B C N
Groups of Elements 1A 8A H He 2A 3A 4A 5A 6A 7A Li Be B C N O F Ne Na
Do Now: Answer the following:
Emission of Energy by Atoms and Electron Configurations
Trends of the Periodic Table
Periodic Table Kelter, Carr, Scott, Chemistry A Wolrd of Choices 1999, page 74.
Periodic Trends Atomic Size Ionization Energy Electron Affinity
WHAT THE HECK DO I NEED TO BE ABLE TO DO?
THE PERIODIC TABLE.
Periodic Table of the Elements
ТАБЛИЦА Б. Е. ЛИПОВА «STRUCTURE OF ATOMIC NUCLEUS”
Electron Configuration
4.2 IONIZATION ENERGY 4.6 TABLE 4.2 Ionization Energy of the Elements
Introduction To Chemistry
What Things Do I have To Memorize in AP Chem?
PERIODIC TABLE OF ELEMENTS
Journal: Choose one of these Periodic Table ideas or come up with your own. Explain what different CATEGORIES/SECTIONS you would make to group your “Elements”
Electron Configurations
DETECTION LIMITS < 1 ppt ng/L 1-10 ppt ng/L ppt ng/L
Line Spectra and the Bohr Model
with modifications by Ken Costello
1.5 Periodic Table: History & Trends
PeRiOdIc TaBlE of ElEmEnTs
Electron Configurations and the Periodic Table
→ Atomic radius decreases → Ionization energy increases → Electronegativity increases →
Presentation transcript:

Relations between crystal structures Relations between crystal structures. Bärnighausen trees of crystal families. Computer tools on BCS for the study of crystal-structure relationships. Yuri E.Kitaev

PLAN OF THE LECTURE Space groups, structure types, structures Symmetry relationships between structure types a) ascending Bärnighausen tree: group-supergroup tree b) descending Bärnighausen tree: group-subgroup tree c) non-characteristic orbits d) aristotypes, hettotypes, “dead-ends” Construction of Bärnighausen trees for two main cases a) symmetry relationships between different phases b) symmetry relationships between the structure types derived from the parent structure by various substitutions Exercises

Space groups, structure types, structures Space group No 225 Fm-3m NaCl structure type CaF2 structure type Na – 4a, Cl – 4b Ca – 4a, F- 8c

CaF2 (fluorite) structure type MeO2 (Me=Rb; Zr, Hf; Sn; Po; Si; Ce, Pr, Tb, Te; Th, Pa, U, Np, Pu, Am, Bk, Cf ) MeF2 (Me= Ca, Sr, Ba, Ra; Ti; Cd, Hg; Pb;Sm, Eu) MeCl2 (Me= Sr, Ba) MeH2 (Me= Sc,Y; Ti, Zr; V, Nb, Ta; Cr; La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; Np, Pu, Am)

MoSi2 structure type Space group G139 D4h17(I4/mmm) BaO2, KO2, CsO2, CaC2, NdC2, SrC2, SrN2 A – 2a (000) B – 4e (00z) (00-z) + (½½½)

Ascending Bärnighausen tree Choice of the parent structure Construction of an ascending Bärnighausen tree “Dead ends” Predictions: Are high-symmetry (high-temperature) phases possible? ? G139 2a, 4e

Index of a group-subgroup relation i = ik ∙ it ik is the k-index (klassengleich index) = cell multiplication in the case of primitive cells it is the t-index (translationgleich index) = ratio of the orders of the point groups G and H

Minimal supergroups (of index 2, 3 and 4) of group 139 (I4/mmm) MINSUP

Minimal supergroups (of index 2) isomorphic to the group 123 (P4/mmm) of the group 139 (I4/mmm)

Wyckoff Positions Splitting for group - subgroup pair P4/mmm(123)>I4/mmm(139)

Ascending Bärnighausen tree for G139 (2a,4e) The structure type at ambient conditions was chosen as the parent structure type The ascending Bärnighausen tree is constructed using MINSUP The G139 (2a,4e) structure type is the “dead end” of the ascending Bärnighausen tree, i.e. the archetype structure Displacive-type transitions from the G139 (2a,4e) structure type into the high-symmetry (high-temperature) phases are forbidden G123 G221 G225 G139 (index 3,5,7,9) G139 2a, 4e

Descending Bärnighausen tree for G139(2a,4e) Choice of the aristotype Construction of an descending Bärnighausen tree Structure types with non-characteristic orbits Possible paths into the low-symmetry structure types Predictions of intermediate structure types G139 2a, 4e ? ? ? ?

Maximal subgroups of group 139 (I4/mmm) MAXSUB

Wyckoff Positions Splitting for group - subgroup pair I4/mmm(139)>I4/m(87)

Transition into the structure with non-characteristic orbits Structures G139 (2a,4e) and G87 (2a, 4e) are indistinguishable: Atoms occupy the same points in space

Descending Bärnighausen tree for G139 (2a,4e) The parent structure of the ascending tree was taken as the aristotype for the descending Bärnighausen tree Descending Bärnighausen tree is constructed using MAXSUB Structure types with non-characteristic orbits have been found G69, G71 – lattice strain G87,G97,G119, G121,G126, G128,G131,G134,G136,G137 - Structure types with occupied non-characteristic orbits G139 2a, 4e G69 4a,8i G71 2a,4i G107 2a, 2a+2a G123 1a+1d, 2g+2h G129 2c,2c+2c G139 2a+4e, 4e+4e+4e etc G87 2a,4e G97 2a,4e G119 2a,4e G121 2a,4e G126 2a,4e G128 2a,4e G131 2c,4i G134 2a,4g G136 2a,4e G137 2a,4c

Symmetry relationships between the parent structure type and the structure types derived by various substitutions of atoms GaAs parent structure (GaAs)m(AlAs)n [hkl] derivative structures Space group G216 Td2 (F-43m) Ga : 4a (000) As : 4c (¼¼ ¼)

Maximal subgroups of group 216 (F-43m) MAXSUB We choose cell multiplication along the [001] direction: tetragonal G119 group

G216 → G119 Ga : 4a → 2a As : 4c → 2c Lattice strain No WP splitting [ 1/2 1/2 0 ] [0] [ -1/2 1/2 0 ] [0] [ 0 0 1 ] [0] Ga : 4a → 2a As : 4c → 2c Lattice strain No WP splitting

Maximal subgroups of group 119 (I-4m2) The tools of BCS allow one to obtain results by different ways. One can obtain directly the WP splitting G216 → G115 using WYCKSPLIT, the knowledge of the TRANSFORM MATRIX being needed

Maximal subgroup(s) of type 115 (P-4m2) of index 2 for Space Group 119 (I-4m2)

Wyckoff Positions Splitting for group - subgroup pair I-4m2(119)>P-4m2(115) (class a)

Wyckoff Positions Splitting for group - subgroup pair I-4m2(119)>P-4m2(115) (class b)

Possible derivative structures 1a1 - Ga 1c1 - Al 2g1- As Ga – Al (1x1) G216 Ga: 4a As: 4c G119 Ga: 2a As: 2c G115 Ga:1a+1c As: 2g

EXERCISES EXERCISE 1. Anatase structure type: Space group G141 (I41/amd) Tetragonal system Ti: 4a O: 8e a) Find the minimal supergroups of the anatase space group and show that it is the archetype of the tree. b) Find maximal subgroups of the anatase space group, occupied Wyckoff position splittings, structure types with non-characteristic orbits. c) Find possible paths to the cottunite structure type G62 (Pnma) (4c, 4c+4c).

Anatase structure Space group G141 D2h19( I41/amd) Ti: 4a (0 0 0), (0 ½ ¼) O: 8e (0 0 z), (0 ½ z+¼), (½ 0 –z+¾), (½ ½ -z + ½), + (½ ½ ½)

Minimal supergroups (of index 2, 3 and 4) of group 141 (I41/amd) [origin choice 2] MINSUP

Minimal supergroups (of index 2) isomorphic to the group 134 (P42/nnm) [origin choice 2] of the group 141 (I41/amd) [origin choice 2]

Wyckoff Positions Splitting for group - subgroup pair P42/nnm(134)>I41/amd(141)

Ascending Bärnighausen tree for the anatase structure type (index 3,5,7,9) G134 G141 4a, 8e The G141(4a, 8e) structure type is the “dead end” of the tree

Maximal subgroups of group 141 (I41/amd) MAXSUB

Descending Bärnighausen tree for the anatase structure type 4a, 8e G70 8a,16g G74 4e,4e+4e G88 4a, 8c G98 4b, 8c G109 4a,4a+4a G119 2b+2d,4e+4f G122 4b,8c G141 4a+8e,8e+8e+8e etc G70 – lattice strain G88, G98, G122 – structure types with occupied non-characteristic orbits

Group-Subgroup Lattice and Chains of Maximal Subgroups SUBGROUPGRAPH I41/amd 4a, 8e The transition from anatase G141 into cottunite G62 G74 Imma 4e, 4e+4e G62 Pnma 4c, 4c+4c

Exercises Exercise 2. Wurtzite structure type G186 (P63mc) (2b, 2b) a) For the wurtzite parent structure, find possible (GaN)m(AlN)n superlattice families specified by one of the maximal subgroups in the Bärnighausen tree. b) Determine the superlattice growth direction, i.e. the direction of the unit cell multiplication. c) Find the possible combinations of occupations of the splitted Wyckoff positions.

Symmetry relationships between the parent wurtzite structure type and the structure types derived by various substitutions of atoms Ga – 2b (1/3 2/3 z1) (2/3 1/3 z1+1/2) N – 2b (1/3 2/3 z2) (2/3 1/3 z2+1/2)

Maximal subgroups of group 186 (P63mc)

Wyckoff Positions Splitting for group - subgroup pair P63mc(186)>P63mc(186)

Ga-Ga-Ga-Ga-Al-Ga-Ga-Ga-Ga-Al (4x1) Possible structures for the derivative structure type with the subgroup G186 (index k=5, t=1) for space group G186 Ga – 2b → 2b1+2b2 +2b3+2b4+2b5 N – 2b → 2b6+2b7 +2b8+2b9+2b10 Ga-Ga-Ga-Ga-Al-Ga-Ga-Ga-Ga-Al (4x1) Ga-Ga-Ga-Al-Al-Ga-Ga-Ga-Al-Al (3x2) Ga-Al-Ga-Al-Al-Ga-Al-Ga-Al-Al (1x1x1x2) etc n=2, k=5 N=(nk – 2)/k N=6 combinations

Symmetry relationship tree for the wurzite structure type G186 Ga:2b N: 2b [k=5, t=1] G186 Ga1:2b Ga2:2b Ga3:2b Ga4:2b Al:2b N1:2b N2:2b N3:2b N4:2b N5:2b [k=3, t=1] [k=1, t=2] G186 Ga1:2b Ga2:2b Al:2b N1:2b N2:2b N3:2b G156 Ga:1b Al:1c N1:1b N2:1c 1 type 2 types 6 types

Acknowledgements The author acknowledges the support of IKERBASQUE Basque Foundation for Science.