Lecture 1: basics of lattice QCD Peter Petreczky Lattice regularization and gauge symmetry : Wilson gauge action, fermion doubling Different fermion formulations.

Slides:



Advertisements
Similar presentations
A method of finding the critical point in finite density QCD
Advertisements

Lattice Quantum Chromodynamic for Mathematicians Richard C. Brower Yale University May Day 2007 Tutorial in “ Derivatives, Finite Differences and.
Large Nc Gauge Theories on the lattice Rajamani Narayanan Florida International University Rajamani Narayanan August 10, 2011.
A). Introduction b). Quenched calculations c). Calculations with 2 light dynamical quarks d). (2+1) QCD LATTICE QCD SIMULATIONS, SOME RECENT RESULTS (END.
The QCD equation of state for two flavor QCD at non-zero chemical potential Shinji Ejiri (University of Tokyo) Collaborators: C. Allton, S. Hands (Swansea),
Lattice QCD (INTRODUCTION) DUBNA WINTER SCHOOL 1-2 FEBRUARY 2005.
TQFT 2010T. Umeda (Hiroshima)1 Equation of State in 2+1 flavor QCD with improved Wilson quarks Takashi Umeda (Hiroshima Univ.) for WHOT-QCD Collaboration.
JPS autumn 2010T. Umeda (Hiroshima)1 ウィルソンクォークを用いた N f =2+1 QCD の状態方程式の研究 Takashi Umeda (Hiroshima Univ.) for WHOT-QCD Collaboration JPS meeting, Kyushu-koudai,
QCD-2004 Lesson 1 : Field Theory and Perturbative QCD I 1)Preliminaries: Basic quantities in field theory 2)Preliminaries: COLOUR 3) The QCD Lagrangian.
Test of the Stefan-Boltzmann behavior for T>0 at tree-level of perturbation theory on the lattice DESY Summer Student 2010 Carmen Ka Ki Li Imperial College.
1 A Model Study on Meson Spectrum and Chiral Symmetry Transition Da
O(N) linear and nonlinear sigma-model at nonzeroT within the auxiliary field method CJT study of the O(N) linear and nonlinear sigma-model at nonzeroT.
Towards θvacuum simulation in lattice QCD Hidenori Fukaya YITP, Kyoto Univ. Collaboration with S.Hashimoto (KEK), T.Hirohashi (Kyoto Univ.), K.Ogawa(Sokendai),
QCD thermodynamic on the lattice and the hadron resonance gas Péter Petreczky Physics Department and RIKEN-BNL ECT*/LOEWE/NIKHEF/CATHIE workshop, Trento,
N F = 3 Critical Point from Canonical Ensemble χ QCD Collaboration: A. Li, A. Alexandru, KFL, and X.F. Meng Finite Density Algorithm with Canonical Approach.
QCD thermodynamics from lattice simulations an update using finer lattice spacings Péter Petreczky Physics Department and RIKEN-BNL WWND, February 2-7,
Functional renormalization – concepts and prospects.
Lattice QCD at finite temperature Péter Petreczky Physics Department and RIKEN-BNL Winter Workshop on Nuclear Dynamics, March 12-18, 2006 Bulk thermodynamics.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
QCD thermodynamic on the lattice and the hadron resonance gas Péter Petreczky Physics Department and RIKEN-BNL Winter Workshop on Nuclear Dynamics, Ocho.
Toward an Improved Determination of Tc with 2+1 Flavors of Asqtad Fermions C. DeTar University of Utah The HotQCD Collaboration July 30, 2007.
1 Thermodynamics of two-flavor lattice QCD with an improved Wilson quark action at non-zero temperature and density Yu Maezawa (Univ. of Tokyo) In collaboration.
ATHIC2008T.Umeda (Tsukuba)1 QCD Thermodynamics at fixed lattice scale Takashi Umeda (Univ. of Tsukuba) for WHOT-QCD Collaboration ATHIC2008, Univ. of Tsukuba,
Finite Density with Canonical Ensemble and the Sign Problem Finite Density Algorithm with Canonical Ensemble Approach Finite Density Algorithm with Canonical.
A direct relation between confinement and chiral symmetry breaking in temporally odd-number lattice QCD Lattice 2013 July 29, 2013, Mainz Takahiro Doi.
The HotQCD Equation of State Implications for Hydrodynamic Models 03-APR-20091R. Soltz, LLNL-PRES-xxxxxx for T C see presentation by P. Petreczky or poster.
Equation of state in 2+1 flavor QCD Péter Petreczky HotQCD Collaboration Status of trace anomaly calculations in 2011: significant discrepancies in ε-3p.
Exploring Real-time Functions on the Lattice with Inverse Propagator and Self-Energy Masakiyo Kitazawa (Osaka U.) 22/Sep./2011 Lunch BNL.
Imaginary Chemical potential and Determination of QCD phase diagram
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
Condensates and topology fixing action Hidenori Fukaya YITP, Kyoto Univ. Collaboration with T.Onogi (YITP) hep-lat/
1 Approaching the chiral limit in lattice QCD Hidenori Fukaya (RIKEN Wako) for JLQCD collaboration Ph.D. thesis [hep-lat/ ], JLQCD collaboration,Phys.Rev.D74:094505(2006)[hep-
Lattice QCD at high temperature Péter Petreczky Physics Department and RIKEN-BNL EFT in Particle and Nuclear Physics, KITPC, Beijing August 19, 2009 Introduction.
Review of recent highlights in lattice calculations at finite temperature and finite density Péter Petreczky Symmetries of QCD at T>0 : chiral and deconfinement.
Recent developments in lattice QCD Péter Petreczky Physics Department and RIKEN-BNL SQM 2007, June 24-29, 2007 Thermodynamics of 2+1 flavor QCD for nearly.
1 QCD Thermodynamics at High Temperature Peter Petreczky Large Scale Computing and Storage Requirements for Nuclear Physics (NP), Bethesda MD, April 29-30,
Study of chemical potential effects on hadron mass by lattice QCD Pushkina Irina* Hadron Physics & Lattice QCD, Japan 2004 Three main points What do we.
Wilson PRD10, 2445 (1974); Ginsparg Wilson PRD25, 2649 (1982); Neuberger PLB417, 141 (1998), Hasenfratz laliena Niedermayer PLB427, 125 (1998) Criterion.
Heavy quark potential at non-zero temperature Péter Petreczky Hard Probes 2013, Stellenbosch, South Africa, November 4-8, 2013 Motivation : the study and.
1 Lattice Quantum Chromodynamics 1- Literature : Lattice QCD, C. Davis Hep-ph/ Burcham and Jobes By Leila Joulaeizadeh 19 Oct
Huey-Wen Lin — Workshop1 Semileptonic Hyperon Decays in Full QCD Huey-Wen Lin in collaboration with Kostas Orginos.
Riken Lunch SeminarT.Umeda (BNL)1 Transition temperature and Equation of State from RBC-Bielefeld Collaboration Takashi Umeda (BNL) for the RBC - Bielefeld.
Recent developments in lattice QCD Péter Petreczky Physics Department and RIKEN-BNL Early time dynamics in Heavy Ion Collisions, McGill University, Montréal,
Lattice 2006 Tucson, AZT.Umeda (BNL)1 QCD thermodynamics with N f =2+1 near the continuum limit at realistic quark masses Takashi Umeda (BNL) for the RBC.
1 Nontopological Soliton in the Polyakov Quark Meson Model Hong Mao ( 毛鸿 ) Department of Physics, Hangzhou Normal University With: Jinshuang Jin ( HZNU.
Quarks Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) Tokyo Univ., Sep. 27, 2007 Lattice Study of F. Karsch and M.K., arXiv:
An Introduction to Lattice QCD and Monte Carlo Simulations Sinya Aoki Institute of Physics, University of Tsukuba 2005 Taipei Summer Institute on Particles.
QCD Thermodynamics on Lattice Peter Petreczky Brookhaven National Laboratory Transition and EOS at T>0 QCD at T>0, mu>0 Deconfinement vs. chiral transition.
Lattice QCD and the strongly interacting matter Péter Petreczky Physics Department Zimányi School 2012 and Ortvay Colloquium, December 6, 2012, ELTE, Budapest.
The QCD EoS from simulations on BlueGene L Supercomputer at LLNL and NYBlue Rajan Gupta T-8, Los Alamos National Lab Lattice 2008, College of William and.
Deconfinement and chiral transition in finite temperature lattice QCD Péter Petreczky Deconfinement and chiral symmetry restoration are expected to happen.
QCD on Teraflops computerT.Umeda (BNL)1 QCD thermodynamics on QCDOC and APEnext supercomputers QCD thermodynamics on QCDOC and APEnext supercomputers Takashi.
Syo Kamata Rikkyo University In collaboration with Hidekazu Tanaka.
Matter-antimatter coexistence method for finite density QCD
Recent developments in lattice QCD Péter Petreczky
Lattice QCD at finite temperature Péter Petreczky
Thermodynamics of QCD in lattice simulation with improved Wilson quark action at finite temperature and density WHOT-QCD Collaboration Yu Maezawa (Univ.
QCD Thermodynamics at fixed lattice scale
Speaker: Takahiro Doi (Kyoto University)
Deconfinement and Equation of State in QCD
NGB and their parameters
Quarkonia at finite temperature: lattice results Peter Petreczky
Takashi Umeda (BNL) BNL Saumen Datta Christian Schmidt Frithjof Karsch
Adnan Bashir, UMSNH, Mexico
Topology conserving gauge action and the overlap Dirac operator
QCD thermodynamics on QCDOC Machine
Takashi Umeda (Hiroshima Univ.) for WHOT-QCD Collaboration
Neutron EDM with external electric field
QCD at very high density
EoS in 2+1 flavor QCD with improved Wilson fermion
Presentation transcript:

Lecture 1: basics of lattice QCD Peter Petreczky Lattice regularization and gauge symmetry : Wilson gauge action, fermion doubling Different fermion formulations Meson correlation function and Wilson loops Scale setting, continuum limit and lines of constant physics (LCP) Numerical simulations : path integral, quenched approximation Improved actions and thermodynamics The integral method and equation of state from lattice QCD 1

evolution operator in imaginary time Finite Temperature QCD and its Lattice Formulation Integral over functions Lattice integral with very large (but finite) dimension ( > ) Costs : difficult to study real time properties: spectral functions, transport coefficients 2

Quarks and gluon fields on a lattice fermion doubling ! 16 d.o.f ! 3

Wilson fermions Discretization errors ~ a g 2, used for study of hadron properties, spectral functions chiral symmetry is broken even in the massless case ! additive mass renormalization Wilson Dirac operator is not bounded from below difficulties in numerical simulations Wilson (1975) 4

Staggered fermions 4-flavor theory Kogut, Susskid (1975) different flavors, spin componets sit in different corners of the Brillouin zone or in hypercube 5

Chiral fermions on the lattice ? We would like the following properties for the lattice Dirac operator: Nielsen-Ninomiya no-go theorem : conditions one 1-4 cannot be satisfied simultaneously Wilson fermion formulation gives up 4) Staggered fermion formulation gives up 3) Nielsen, Ninomiya (1981) 6

Ginsparg-Wilson fermions Ginsparg, Wilson (1982) anti-commutation properties are recovered in the continuum limit (a->0) the r.h.s. of the Ginsparg-Wilson relation is zero for the solutions mildest way to break the chiral symmetry on the lattice : physical consequences of the chiral symmetry are mantained ( e.g. chiral perturbation theory ) 7

Generalized chiral symmetry and topology GW relationLuescher (1998) Hasenfratz, Laliena, Niedermeyer (1998) flavor singlet transformation : for flavor non-singlet transformationno anomaly ! 8

Constructing chiral fermion action I Overlap fermions : using it can be shown that GW relation with R=1/2 Neuberger (1998) 9

Constructing chiral fermion action II Domain wall fermions : introduce the fictitious 5 th dimension of extent : Shamir (1993) Extensively used in numerical simulations : (see P. Boyle, 2007 for review) 10

Hasenfratz, Karsch, PLB 125 (83) 308 det M is complex => sign problem det M exp(-S) cannot be a probability QCD at finite baryon density 11

Meson correlators and Wilson loops Meson states are created by quark bilenear operators: Fixes the quantum number of of mesons, Γ is one Of the Dirac matrices Most often one considers point operators x=y and their correlation function: decay constant Consider static quarks : 12

Static meson correlation function functions after integrating out the static quark fields: x y yx 0 τ R Static quark anti-quark potential String tension n=2 and larger : hybrid potentials 13

Numerial results on the potentials Sommer scale Static quark anti-quark potential Hybrid potentials 14

Scale setting in lattice QCD and continuum limit Hadron masses in lattice QCD are dimensionless: m=m phys a Continuum limit: Physics does not depend on the details on the regularization, e.g dimensionless ratios : Should be independent of the lattice spacing The gauge coupling constant depends on the lattice spacing: 15

Lattice QCD calculations Costs : Monte-Carlo Methods, importance sampling: sign problem improved discretization schemes are needed: p4, asqtad, stout, HISQ Staggered fermions : we get 4n f flavors to get 1-flavor replace n f by ¼ (rooting trick) 16

Improved gauge action can be eliminated by adding larger loops 17

Improved staggered fermion actions Standard staggered action has discretization errors ~ a 2 Eliminate those using higher order difference scheme The different staggered which flavors sit in different corners of the Brillouin zone Are completely equivalent in the free theory => flavor symmetry Not the case in the interacting theory: exchange with gluons with momenta ~ π/a can change the quark flavor (taste) as it brings it to another corner of the Brillouin zone Free quark propagator: Heller, Karsch, Sturm, PRD60 (1999)

no taste breaking at Projection to U(3) => HISQ action Naik action: p4 action: Taste symmetry improvement: C C 3,0 = Fat (smeared) link: Rotational symmetry at order p 4 : Normalization: Orginos et al, PRD60 (1999)

Why improved actions ? Pressure of the ideal gluon gasPressure of the ideal quark gas 20

Mass splitting of pseudo-scalar mesons Only one out of 16 PS mesons has zero mass in the chiral limit, the quadratic mass splitting is the measure of flavor symmetry breaking asqtad HISQ PS meson splittings in HISQ calculations are reduced by factor ~ 2.5 compared to asqtad at the same lattice spacing and are even smaller than for stout action => discretizations effects for N τ =8 HISQ calculations are similar to those in N τ =12 asqtad calculations 21

Glossary of improved staggered actions p4, asqtad, HISQ, stout p4 = std. staggered Dslash with 3-step (fat3) link +p4 term asqtad = std. staggered Dslash with 7-step (fat7) link + Naik term HISQ = std. staggered Dslash with re-unitarized doubly smeared 7-step (fat7) link stout = std. staggered Dslash with re-unitarized doubly smeared 3-step (fat7) link 22

Integral method: bulk thermodynamics in SU(3) gauge theory In Monte-Carlo simulations ln Z(T) cannot be determined but only its derivatives computational cost go as because of the vacuum subtraction Boyd et al., Nucl. Phys. B496 (1996)

large cutoff effects ! the free gas limit overestimates cutoff effects Boyd et al., Nucl. Phys. B496 (1996) 167 Wilson gauge action discretization errors => corrections to the pressure 24

Boyd et al., Nucl. Phys. B496 (1996) 167 Wilson gauge action continuum extrapolation Karsch et al, EPJ C 6 (99) 133 Luescher-Weisz gauge action: large reduction of cutoff effects 25