极化弛豫和介电损耗,介电频谱 德拜弛豫和共振弛豫,

Slides:



Advertisements
Similar presentations
机电耦合系数 electro-mechanical coupling factor
Advertisements

第八章 轴系零件 § 8-1 键、销及其连接 一、键连接 二、销连接 § 8-2 轴 一、轴的分类和应用 二、轴的结构和轴上零件的固定
第十二章 常微分方程 返回. 一、主要内容 基本概念 一阶方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程.
概率统计( ZYH ) 节目录 2.1 随机变量与分布函数 2.2 离散型随机变量的概率分布 2.3 连续型随机变量的概率分布 第二章 随机变量及其分布.
概率统计( ZYH ) 节目录 3.1 二维随机变量的概率分布 3.2 边缘分布 3.4 随机变量的独立性 第三章 随机向量及其分布 3.3 条件分布.
一、拟合优度检验 二、变量的显著性检验 三、参数的置信区间
第二十三讲 7.3 利用频率采样法设计 FIR 滤波器. 回顾窗函数设计法: 得到的启发:能否在频域逼近? 用什么方法逼近? 通过加窗实 现时域逼近.
两极异步电动机示意图 (图中气隙磁场形象地 用 N 、 S 来表示) 定子接三相电源上,绕组中流过三相对称电流,气 隙中建立基波旋转磁动势,产生基波旋转磁场,转速 为同步速 : 三相异步电动机的简单工作原理 电动机运行时的基本电磁过程: 这个同步速的气隙磁场切割 转子绕组,产生感应电动势并在 转子绕组中产生相应的电流;
Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011.
2.2 结构的抗力 抗力及其不定因素 材料强度的标准值 材料强度的设计值.
线性调制系统的抗噪声性能 n i (t) 是一个高斯窄带噪声 + 带通滤波器 解调器 n(t) 又 即.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第六十二讲 ) 离散数学. 最后,我们构造能识别 A 的 Kleene 闭包 A* 的自动机 M A* =(S A* , I , f A* , s A* , F A* ) , 令 S A* 包括所有的 S A 的状态以及一个 附加的状态 s.
2.1 结构上的作用 作用及作用效应 作用的分类 荷载分类及荷载代表值.
1 为了更好的揭示随机现象的规律性并 利用数学工具描述其规律, 有必要引入随 机变量来描述随机试验的不同结果 例 电话总机某段时间内接到的电话次数, 可用一个变量 X 来描述 例 检测一件产品可能出现的两个结果, 也可以用一个变量来描述 第五章 随机变量及其分布函数.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样 的一种手段。在实际中,数据不可避免的会有误差,插值函 数会将这些误差也包括在内。
11-8. 电解质溶液的 活度和活度系数 电解质是有能力形成可以 自由移动的离子的物质. 理想溶液体系 分子间相互作用 实际溶液体系 ( 非电解质 ) 部分电离学说 (1878 年 ) 弱电解质溶液体系 离子间相互作用 (1923 年 ) 强电解质溶液体系.
论匀强磁场条件下磁通回 路的取法 物理四班 物理四班 林佳宁 (PB ) 林佳宁 (PB ) 指导老师 : 秦敢 指导老师 : 秦敢.
主讲教师:陈殿友 总课时: 124 第八讲 函数的极限. 第一章 机动 目录 上页 下页 返回 结束 § 3 函数的极限 在上一节我们学习数列的极限,数列 {x n } 可看作自变量 为 n 的函数: x n =f(n),n ∈ N +, 所以,数列 {x n } 的极限为 a, 就是 当自变量 n.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第三十八讲 ) 离散数学. 第八章 格与布尔代数 §8.1 引 言 在第一章中我们介绍了关于集 合的理论。如果将 ρ ( S )看做 是集合 S 的所有子集组成的集合, 于是, ρ ( S )中两个集合的并 集 A ∪ B ,两个集合的交集.
1 第七章 灼热桥丝式电雷管. 1. 热平衡方程 C ℃ 冷却时间 2. 桥丝加热过程 ⑴忽略化学反应惰性方程 ; (2) 为简化集总参数 C, (3) 热损失有两部分 : 轴向与径向 ; 第一种情况 在大功率下忽略热损失, 第二种情况 在输入低功率下 输入 = 散失热量 I I = 3 电容放电时的桥丝温度和发火能量(电容放电下,
1. 2 §11-3 缩孔与缩松 3 冷却 凝固 体积收缩 缩 孔 缩 松 应力 变形 热裂纹 冷裂纹.
第十一章 曲线回归 第一节 曲线的类型与特点 第二节 曲线方程的配置 第三节 多项式回归.
实验一: 信号、 系统及系统响应 1 、实验目的 1 熟悉连续信号经理想采样前后的频谱变化关系, 加深对时 域采样定理的理解。 2 熟悉时域离散系统的时域特性。 3 利用卷积方法观察分析系统的时域特性。 4 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里 叶变换对连续信号、 离散信号及系统响应进行频域分析。
2.4 基本设计表达式 随机变量的统计特征值 结构的可靠性与可靠 基本设计表达式.
线性代数习题课 吉林大学 术洪亮 第一讲 行 列 式 前面我们已经学习了关 于行列式的概念和一些基本 理论,其主要内容可概括为:
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第二十五讲 ) 离散数学. 定理 群定义中的条件 ( 1 )和( 2 )可以减弱如下: ( 1 ) ’ G 中有一个元素左壹适合 1 · a=a; ( 2 ) ’ 对于任意 a ,有一个元素左逆 a -1 适 合 a -1 ·
第二章 随机变量及其分布 第一节 随机变量及其分布函数 一、随机变量 用数量来表示试验的基本事件 定义 1 设试验 的基本空间为 , ,如果对试验 的每一个基 本事件 ,规定一个实数记作 与之对应,这样就得到一个定义在基本空 间 上的一个单值实函数 ,称变量 为随机变量. 随机变量常用字母 、 、 等表示.或用.
第 4 章 过程与变量的作用范围. 4.1 Visual Basic 的代码模块 Visual Basic 的应用程序是由过程组成的, 过程代码存放在模块中。 Visual Basic 提供了 三类模块,它们是窗体模块、标准模块和类 模块。 窗体模块 窗体模块是大多数 Visual Basic.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样的一种手段。 在实际中,数据不可避免的会有误差,插值函数会将这些误差也包括在内。
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第三十九讲 ) 离散数学. 例 设 S 是一个集合, ρ ( S )是 S 的幂集合,集合 的交( ∩ ),并(∪)是 ρ ( S )上的两个代数运算, 于是,( ρ ( S ), ∩ ,∪) 是一个格。而由例 知.
第二章 贝叶斯决策理论 3学时.
流态化 概述 一、固体流态化:颗粒物料与流动的流体接触,使颗粒物料呈类 似于流体的状态。 二、流态化技术的应用:流化催化裂化、吸附、干燥、冷凝等。 三、流态化技术的优点:连续化操作;温度均匀,易调节和维持; 气、固间传质、传热速率高等。 四、本章基本内容: 1. 流态化基本概念 2. 流体力学特性 3.
非均相物系的分离 沉降速度 球形颗粒的 :一、自由沉降 二、沉降速度的计算 三、直径计算 1. 试差法 2. 摩擦数群法 四、非球形颗粒的自由沉降 1. 当量直径 de :与颗粒体积相等的圆球直径 V P — 颗粒的实际体积 2. 球形度  s : S—— 与颗粒实际体积相等的球形表面积.
量子化学 第四章 角动量与自旋 (Angular momentum and spin) 4.1 动量算符 4.2 角动量阶梯算符方法
化学系 3 班 何萍 物质的分离原理 世世界上任何物质,其存在形式几乎均以混合 物状态存在。分离过程就是将混合物分成两 种或多种性质不同的纯物质的过程。 分分子蒸馏技术是一种特殊的液-液分离技术。
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 5 章 解线性方程组的直接法 实际中,存在大量的解线性方程组的问题。很多数值方 法到最后也会涉及到线性方程组的求解问题:如样条插值的 M 和.
主讲教师:陈殿友 总课时: 124 第十一讲 极限的运算法则. 第一章 二、 极限的四则运算法则 三、 复合函数的极限运算法则 一 、无穷小运算法则 机动 目录 上页 下页 返回 结束 §5 极限运算法则.
在发明中学习 线性代数 概念的引入 李尚志 中国科学技术大学. 随风潜入夜 : 知识的引入 之一、线性方程组的解法 加减消去法  方程的线性组合  原方程组的解是新方程的解 是否有 “ 增根 ” ?  互为线性组合 : 等价变形  初等变换  高斯消去法.
§2.2 一元线性回归模型的参数估计 一、一元线性回归模型的基本假设 二、参数的普通最小二乘估计( OLS ) 三、参数估计的最大或然法 (ML) 四、最小二乘估计量的性质 五、参数估计量的概率分布及随机干 扰项方差的估计.
第一节 相图基本知识 1 三元相图的主要特点 (1)是立体图形,主要由曲面构成; (2)可发生四相平衡转变; (3)一、二、三相区为一空间。
量子力学教程 ( 第二版 ) 3.4 连 续 谱 本 征 函 数 的 归 一 化 连续谱本征函数是不能归一化的 一维粒子的动量本征值为的本征函数 ( 平面波 ) 为 可以取 中连续变化的一切实数值. 不难看出,只要则 在量子力学中, 坐标和动量的取值是连续变化 的 ; 角动量的取值是离散的.
换热器换热器 反应器反应器. 间壁 热流体 冷流体 热流体 套管换热器 外壳 管板 封头封头 挡板 ( 折流板 ) 封头 列管式换热器列管式换热器 管壳式换热器管壳式换热器.
导体  电子导体  R   L  i 离子导体  ( 平衡 ) mm   .
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第五十三讲 ) 离散数学. 定义 设 G= ( V , T , S , P ) 是一个语法结构,由 G 产生的语言 (或者说 G 的语言)是由初始状态 S 演绎出来的所有终止符的集合, 记为 L ( G ) ={w  T *
第二十四讲 相位延时系统 相位超前系统 全通系统. 一、最小与最大相位延时系统、最小 与最大相位超前系统 LSI 系统的系统函数: 频率响应:
周期信号的傅里叶变换. 典型非周期信号 ( 如指数信号, 矩形信号等 ) 都是满足绝对可 积(或绝对可和)条件的能量信号,其傅里叶变换都存在, 但绝对可积(或绝对可和)条件仅是充分条件, 而不是必 要条件。引入了广义函数的概念,在允许傅里叶变换采用 冲激函数的前提下, 使许多并不满足绝对可积条件的功率.
§8-3 电 场 强 度 一、电场 近代物理证明:电场是一种物质。它具有能量、 动量、质量。 电荷 电场 电荷 电场对外的表现 : 1) 电场中的电荷要受到电场力的作用 ; 2) 电场力可移动电荷作功.
报告人:黄磊 缓冲溶液的积分缓冲容量. 缓冲指数的概念是 Vanslyke 在 1922 年提出 的,意义是当缓冲溶液改变一个单位时需 加入酸碱物质的量 即 这里的缓冲指数指的是微分缓冲容量,是 加酸碱物质的量随着 pH 值的变化率 1 ,微分缓冲容量.
Department of Mathematics 第二章 解析函数 第一节 解析函数的概念 与 C-R 条件 第二节 初等解析函数 第三节 初等多值函数.
1-4 节习题课 山东省淄博第一中学 物理组 阚方海. 2 、位移公式: 1 、速度公式: v = v 0 +at 匀变速直线运动规律: 4 、平均速度: 匀变速直线运动 矢量式 要规定正方向 统一单位 五个量知道了三 个量,就能求出 其余两个量 3 、位移与速度关系:
《 UML 分析与设计》 交互概述图 授课人:唐一韬. 知 识 图 谱知 识 图 谱知 识 图 谱知 识 图 谱.
1 、如果 x + 5 > 4 ,那么两边都 可得 x >- 1 2 、在- 3y >- 4 的两边都乘以 7 可得 3 、在不等式 — x≤5 的两边都乘以- 1 可得 4 、将- 7x — 6 < 8 移项可得 。 5 、将 5 + a >- 2 a 移项可得 。 6 、将- 8x < 0.
名探柯南在侦查一个特大盗窃集团过程 中,获得藏有宝物的密码箱,密码究竟 是什么呢?请看信息: ABCDEF( 每个字 母表示一个数字 ) A :是所有自然数的因数 B :既有因数 5 ,又是 5 的倍数 C :既是偶数又是质数 D :既是奇数又是合数 EF :是 2 、 3 、 5 的最小公倍数.
1 物体转动惯量的测量 南昌大学理学院
§10.2 对偶空间 一、对偶空间与对偶基 二、对偶空间的有关结果 三、例题讲析.
第三章 正弦交流电路.
7 生产费用在完工产品与在产 品之间分配的核算. 2 第七章 生产费用在完工产品与在产品之 间的分配  知识点 :  理解在产品的概念  掌握生产费用在完工产品与在产品之间的分 配.
力的合成 力的合成 一、力的合成 二、力的平行四边形 上一页下一页 目 录 退 出. 一、力的合成 O. O. 1. 合力与分力 我们常常用 一个力来代替几个力。如果这个 力单独作用在物体上的效果与原 来几个力共同作用在物体上的效 果完全一样,那么,这一个力就 叫做那几个力的合力,而那几个 力就是这个力的分力。
个体 精子 卵细胞 父亲 受精卵 母亲 人类生活史 问题:人类产生配子(精、卵 细胞)是不是有丝分裂?
逻辑设计基础 1 第 7 章 多级与(或)非门电路 逻辑设计基础 多级门电路.
第 11 章 旋转电机交流绕组的电势和磁势 内 容 提 要内 容 提 要  旋转磁场是交流电机工作的基础。  在交流电机理论中有两种旋转磁场: (1) 机械旋转磁场(二极机械旋转磁场,四极机械旋转磁场) (2) 电气旋转磁场(二极电气旋转磁场,四极电气旋转磁场)二极机械旋转磁场四极机械旋转磁场二极电气旋转磁场四极电气旋转磁场.
§5.6 利用希尔伯特 (Hilbert) 变换 研究系统的约束特性 希尔伯特变换的引入 可实现系统的网络函数与希尔伯特变换.
欢 迎 使 用 《工程流体力学》 多媒体授课系统 燕 山 大 学 《工程流体力学》课程组. 第九章 缝隙流动 概述 9.1 两固定平板间的层流流动 9.2 具有相对运动的两平行平板 间的缝隙流动 9.3 环形缝隙中的层流流动.
霍尔效应及其应用 汪礼胜 武汉理工大学物理实验中心. 【实验目的】 1 、研究霍尔效应的基本特性 ( 1 )了解霍尔效应实验原理以及有关霍尔器件 对材料要求的知识; ( 2 )测绘霍尔元件的 和 曲线; ( 3 )确定霍尔元件的导电类型,测量其霍尔系 数、载流子浓度以及迁移率。 2 、应用霍尔效应测量磁场(选做)
1 第三章 数列 数列的概念 考点 搜索 ●数列的概念 ●数列通项公式的求解方法 ●用函数的观点理解数列 高考 猜想 以递推数列、新情境下的 数列为载体, 重点考查数列的通 项及性质, 是近年来高考的热点, 也是考题难点之所在.
§9. 恒定电流场 第一章 静电场 恒定电流场. 电流强度  电流:电荷的定向移动  正负电荷反方向运动产生的电磁效应相同 ( 霍尔效应 特例 ) 规定正电荷流动的方向为正方向  电流方向:正方向、反方向  电流强度 ( 电流 ) A 安培 标量 单位时间通过某一截面的电荷.
目录 上页 下页 返回 结束 二、无界函数反常积分的审敛法 * 第五节 反常积分 无穷限的反常积分 无界函数的反常积分 一、无穷限反常积分的审敛法 反常积分的审敛法  函数 第五章 第五章.
本章讨论有限自由度结构系统,在给定载荷和初始条件激励下的系统动力响应计算方法。 第 六 章
§7.2 估计量的评价标准 上一节我们看到,对于总体 X 的同一个 未知参数,由于采用的估计方法不同,可 能会产生多个不同的估计量.这就提出一 个问题,当总体的一个参数存在不同的估 计量时,究竟采用哪一个好呢?或者说怎 样评价一个估计量的统计性能呢?下面给 出几个常用的评价准则. 一.无偏性.
高 频 电 子 线 路高 频 电 子 线 路 主讲 元辉 5.5 晶体振荡器 石英晶体振荡器的频率稳定度 1 、石英晶体谐振器具有很高的标准性。 、石英晶体谐振器与有源器件的接入系数通常近似 如下 受外界不稳定因素的影响少。 3 、石英晶体谐振器具有非常高的值。 维持振荡频率稳定不变的能力极强。
Presentation transcript:

极化弛豫和介电损耗,介电频谱 德拜弛豫和共振弛豫, 动态介电常数 极化弛豫和介电损耗,介电频谱 德拜弛豫和共振弛豫, wangcl@sdu.edu.cn

动态介电常数 在静电场下测得的介电常数称为静态介电常数,在交变电场下测得的介电常数称为动态介电常数,动态介电常数与测量频率有关。前面主要介绍了在静电场作用下的介电性质,下面介绍一下在交变电场作用下的介电性质。 wangcl@sdu.edu.cn

弛豫时间 relaxation time 因为电介质的极化强度是电子位移极化、离子位移极化和固有偶极矩取向极化三种极化机制的贡献。当电介质开始受静电场作用时,要经过一段时间后,极化强度才能达到相应的数值,这个现象称为极化弛豫,所经过的这段时间称为弛豫时间。 wangcl@sdu.edu.cn

电子位移极化和离子位移极化的弛豫时间很短(电子位移极化的弛豫时间比离子位移极化的还要短),取向极化的弛豫时间较长,所以极化弛豫主要是取向极化造成的。当电介质受到交变电场的作用时,由于电场不断在变化,所以电介质中的极化强度也要跟着不断变化,即极化强度和电位移均将随时间作周期性的变化。 wangcl@sdu.edu.cn

wangcl@sdu.edu.cn

猛禽F-22 介质损耗 dielectric loss 夜隼F-117 如果交变电场的频率足够低,取向极化能跟得上外加电场的变化,这时电介质的极化过程与静电场作用下的极化过程没有多大的区别。如果交变电场的频率足够高,电介质中的极化强度就会跟不上外电场的变化而出现滞后,从而引起介质损耗。 通常情况下希望损耗低。 应用:微波吸收 wangcl@sdu.edu.cn

动态介电常数也不同于静态介电常数。所谓介质损耗,就是在某一频率下供给介质的电能,其中有一部分因强迫固有偶极矩的转动而使介质变热,即一部分电能以热的形式而消耗。可见,介质损耗可反映微观极化的弛豫过程。 wangcl@sdu.edu.cn

由于极化弛豫,P与D都将有一个相角落后于电场E,设此角为,则D可写为: 若作用在电介质上的交变电场为: 由于极化弛豫,P与D都将有一个相角落后于电场E,设此角为,则D可写为: 其中:D1=D0cos(), D2=D0sin()。 wangcl@sdu.edu.cn

对于大多数电介质材料,D0与E0成正比,不过比例系数不是常数,而是与频率有关。为了反映这个情况,引入两个与频率有关的介电常数: wangcl@sdu.edu.cn

因1和2与频率有关,所以相角也与频率有关。当频率趋近于零时,极化不出现滞后,这时相角=0。 并有: 因1和2与频率有关,所以相角也与频率有关。当频率趋近于零时,极化不出现滞后,这时相角=0。 wangcl@sdu.edu.cn

由此可见,当频率接近于零时,1就等于静态介电常数。 wangcl@sdu.edu.cn

下面证明在介质中以热的形式所消耗的能量与2()有关。 因为电容器中的电流强度为: 其中为电容器板上的自由电荷面密度。 wangcl@sdu.edu.cn

在单位体积内介质每单位时间所消耗的能量为: 可见,能量损失与sin()成正比。 wangcl@sdu.edu.cn

损耗因子 loss factor 因此,sin()称为损耗因子;因为当很小时,sin()tan(),所以有时也称tan()为损耗因子。 因为介质损耗与电场强度的频率、温度以及极化机制等都有关系,是一个比较复杂的问题。介质损耗大的材料,做成元件质量也差,有时甚至不能使用。所以介质损耗的大小,是判断材料性能的重要参数之一。 wangcl@sdu.edu.cn

注意:在某一频率范围的介质损耗小,并不等于在所有频率范围内的介质损耗都小。 例如,铌酸锂LiNbO3晶体在室温(20C)时的损耗因子tan()与频率的关系如图2-18所示。从图中可以看出,在频率为107Hz附近损耗很大,因此设计器件时就应考虑避开此频率附近。如选用LiNbO3晶片做纵向振动时就不应选择大小约为7.67.625.4的晶片。 wangcl@sdu.edu.cn

图2-18 铌酸锂晶体的损耗因子与频率的关系(25C) wangcl@sdu.edu.cn

两种类型的介电频谱 电介质的极化主要来自三个方面: 电子位移极化; 离子位移极化; 固有偶极子的取向极化; 不同频率下,各种极化机制贡献不同,使各种材料有其特有的介电频谱。 wangcl@sdu.edu.cn

设在时间间隔u到u+du之间,对介质施加强度为E(u)的脉冲电场。产生的电位移可以分为两部分:一部分是它随电场瞬时变化,用光频电容()表示。 wangcl@sdu.edu.cn

另一部分则由于极化的惯性而在时间tu+du是继续存在。如果在不同的时间有几个脉冲电场,则总的电位移为各脉冲电场产生的电位移的叠加。如果施加的是一起始于u=0的连续变化的电场,则求和应该为积分 wangcl@sdu.edu.cn

式中(t-u)为衰减函数,它描写电场撤除后D随时间的衰减。 显然当t时,(t-u) 0。 现在考虑施加周期性电场E(t)=E0cos t,并将变量u改为x=t-u.如果电场保持足够长的时间,致使t大于衰减函数趋于零的特征时间,则积分上限x可取为无穷大。 在此情况下,D也必然随时间周期性变化 wangcl@sdu.edu.cn

可写为 于是可将(6.1)式写成 wangcl@sdu.edu.cn

式中r()时光频电容的实部。此时可统一写为下边的式子: 由此得到 式中r()时光频电容的实部。此时可统一写为下边的式子: wangcl@sdu.edu.cn

上式还表明,r’和r”都可以由同一个函数导出,所以它们不可能是独立的。现在求他们的关系。 wangcl@sdu.edu.cn

对上边两个式子作傅里叶变换,可得到衰减函数为 wangcl@sdu.edu.cn

由此可得到熟知的Kramers-Kronig关系 式中积分前的字母P表示积分时取Cauchy积分主值,即积分路径绕开奇点= ’。 wangcl@sdu.edu.cn

上式表明,如果在足够宽的频率范围内已知r’,则可以计算出r”,反之亦然。 前边的统一式子表明,不同系统的特性表现在衰减函数(x)上。 wangcl@sdu.edu.cn

对电场的响应 铁电体大致可以分为两种类型: 有序无序型: 可描写为可转动的偶极子的集合。 位移型: 可描写为有阻尼的准谐振子的系统。 wangcl@sdu.edu.cn

其中r(0)和r()分别为静态和光频介电常数的实部。 对于可转动的偶极子系统,电场撤除后,偶极子由有序到无序的过程是一个驰豫过程,可用exp(-t/)来描写,是弛豫时间。因此衰减函数可以写为: 其中r(0)和r()分别为静态和光频介电常数的实部。 wangcl@sdu.edu.cn

将这一衰减函数代入上边的(6.3)式,即可得到下边的介电色散方程: 这就是德拜针对无相互作用的转向偶极子的介电弛豫方程。 wangcl@sdu.edu.cn

令上式两边实部和虚部分别相等,得出: wangcl@sdu.edu.cn

德拜介电弛豫中电容率实部和虚部与频率的关系 wangcl@sdu.edu.cn

由此图可以看出,等于-1时,‘r 急剧下降,此时 wangcl@sdu.edu.cn

对于阻尼谐振子系统,电场撤除后振子作衰减振动,其频率1低于固有频率0,振幅随时间指数衰减。 这可用exp(-  t/2)sin(1t)来描写,其中是阻尼系数,其大小等于阻尼力与动量之比。 wangcl@sdu.edu.cn

为了使(6.3)成为无量纲的量,我们将衰减函数写成 式中 ,将(6.8)代如(6.3)既得到谐振型的介电色散方程 wangcl@sdu.edu.cn

其中2= 01,分别写出实部和虚部,则得出 wangcl@sdu.edu.cn

谐振型介电响应中电容率实部和虚部与频率的关系 wangcl@sdu.edu.cn

summary Dynamic dielectric constant, real and imaginary part, dielectric loss Frequency spectrum of dielectric constant, Kramers-Kronig relation Debye relaxation, damped resonantor relaxation. wangcl@sdu.edu.cn

介电性质 极化机制(3) 有效场计算(Lorenz)  介电常数(Clausius-Mossotti) 定性(OK), 定量(?) 各向异性介质+对称性(点群)介电常数张量(独立数目) 动态介电常数:弛豫+损耗,德拜弛豫和阻尼谐振子弛豫 wangcl@sdu.edu.cn