WIMS 2014, June 2-4Thessaloniki, Greece1 Optimized Backward Chaining Reasoning System for a Semantic Web Hui Shi, Kurt Maly, and Steven Zeil Contact:

Slides:



Advertisements
Similar presentations
Some Prolog Prolog is a logic programming language
Advertisements

Schema Matching and Query Rewriting in Ontology-based Data Integration Zdeňka Linková ICS AS CR Advisor: Július Štuller.
Computer Science CPSC 322 Lecture 25 Top Down Proof Procedure (Ch 5.2.2)
Big Ideas in Cmput366. Search Blind Search State space representation Iterative deepening Heuristic Search A*, f(n)=g(n)+h(n), admissible heuristics Local.
Methods of Proof Chapter 7, second half.. Proof methods Proof methods divide into (roughly) two kinds: Application of inference rules: Legitimate (sound)
Methods of Proof Chapter 7, Part II. Proof methods Proof methods divide into (roughly) two kinds: Application of inference rules: Legitimate (sound) generation.
Propositional Logic Reading: C , C Logic: Outline Propositional Logic Inference in Propositional Logic First-order logic.
Logic.
Of 27 lecture 7: owl - introduction. of 27 ece 627, winter ‘132 OWL a glimpse OWL – Web Ontology Language describes classes, properties and relations.
WIMS 2011, Sogndal, Norway1 Comparison of Ontology Reasoning Systems Using Custom Rules Hui Shi, Kurt Maly, Steven Zeil, and Mohammad Zubair Contact:
CPSC 322, Lecture 23Slide 1 Logic: TD as search, Datalog (variables) Computer Science cpsc322, Lecture 23 (Textbook Chpt 5.2 & some basic concepts from.
CPSC 322, Lecture 19Slide 1 Propositional Logic Intro, Syntax Computer Science cpsc322, Lecture 19 (Textbook Chpt ) February, 23, 2009.
Proof methods Proof methods divide into (roughly) two kinds: –Application of inference rules Legitimate (sound) generation of new sentences from old Proof.
CPSC 322 Introduction to Artificial Intelligence September 20, 2004.
CPSC 322, Lecture 23Slide 1 Logic: TD as search, Datalog (variables) Computer Science cpsc322, Lecture 23 (Textbook Chpt 5.2 & some basic concepts from.
Methods of Proof Chapter 7, second half.
Artificial Intelligence Chapter 17 Knowledge-Based Systems Biointelligence Lab School of Computer Sci. & Eng. Seoul National University.
Describing Syntax and Semantics
Ontology translation: two approaches Xiangkui Yao OntoMorph: A Translation System for Symbolic Knowledge By: Hans Chalupsky Ontology Translation on the.
Managing Large RDF Graphs (Infinite Graph) Vaibhav Khadilkar Department of Computer Science, The University of Texas at Dallas FEARLESS engineering.
RDF Triple Stores Nipun Bhatia Department of Computer Science. Stanford University.
Database Support for Semantic Web Masoud Taghinezhad Omran Sharif University of Technology Computer Engineering Department Fall.
Ming Fang 6/12/2009. Outlines  Classical logics  Introduction to DL  Syntax of DL  Semantics of DL  KR in DL  Reasoning in DL  Applications.
Value Set Resolution: Build generalizable data normalization pipeline using LexEVS infrastructure resources Explore UIMA framework for implementing semantic.
Pattern-directed inference systems
Logical Agents Logic Propositional Logic Summary
Slide 1 Propositional Definite Clause Logic: Syntax, Semantics and Bottom-up Proofs Jim Little UBC CS 322 – CSP October 20, 2014.
Comparison of BaseVISor, Jena and Jess Rule Engines Jakub Moskal, Northeastern University Chris Matheus, Vistology, Inc.
SPARQL Query Graph Model (How to improve query evaluation?) Ralf Heese and Olaf Hartig Humboldt-Universität zu Berlin.
Efficient RDF Storage and Retrieval in Jena2 Written by: Kevin Wilkinson, Craig Sayers, Harumi Kuno, Dave Reynolds Presented by: Umer Fareed 파리드.
Logical Agents Chapter 7. Knowledge bases Knowledge base (KB): set of sentences in a formal language Inference: deriving new sentences from the KB. E.g.:
Bigscholar 2014, April 8, Seoul, South Korea1 Trust and Hybrid Reasoning for Ontological Knowledge Bases Hui Shi, Kurt Maly, and Steven Zeil Contact:
Automated Reasoning Early AI explored how to automated several reasoning tasks – these were solved by what we might call weak problem solving methods as.
Logical Agents Chapter 7. Outline Knowledge-based agents Logic in general Propositional (Boolean) logic Equivalence, validity, satisfiability.
KR A Principled Framework for Modular Web Rule Bases and its Semantics Anastasia Analyti Institute of Computer Science, FORTH-ICS, Greece Grigoris.
Triple Stores. What is a triple store? A specialized database for RDF triples Can ingest RDF in a variety of formats Supports a query language – SPARQL.
© Copyright 2008 STI INNSBRUCK Intelligent Systems Propositional Logic.
DEDUCTION PRINCIPLES AND STRATEGIES FOR SEMANTIC WEB Chain resolution and its fuzzyfication Dr. Hashim Habiballa University of Ostrava.
Inference in First Order Logic. Outline Reducing first order inference to propositional inference Unification Generalized Modus Ponens Forward and backward.
1 Propositional Logic Limits The expressive power of propositional logic is limited. The assumption is that everything can be expressed by simple facts.
Logical Agents Chapter 7. Outline Knowledge-based agents Propositional (Boolean) logic Equivalence, validity, satisfiability Inference rules and theorem.
Some Thoughts to Consider 5 Take a look at some of the sophisticated toys being offered in stores, in catalogs, or in Sunday newspaper ads. Which ones.
Proof Methods for Propositional Logic CIS 391 – Intro to Artificial Intelligence.
Service Computation 2013, Valencia, Spain1 Query Optimization in Cooperation with an Ontological Reasoning Service Hui Shi, Kurt Maly, and Steven Zeil.
Computing & Information Sciences Kansas State University Wednesday, 04 Oct 2006CIS 490 / 730: Artificial Intelligence Lecture 17 of 42 Wednesday, 04 October.
Managing Large RDF Graphs Vaibhav Khadilkar Dr. Bhavani Thuraisingham Department of Computer Science, The University of Texas at Dallas December 2008.
Logical Agents. Outline Knowledge-based agents Logic in general - models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability.
Rule-based Reasoning in Semantic Text Analysis
ECE457 Applied Artificial Intelligence Fall 2007 Lecture #6
Triple Stores.
Computer Science cpsc322, Lecture 20
EA C461 – Artificial Intelligence Logical Agent
Artificial Intelligence Chapter 17 Knowledge-Based Systems
Using Rules with Ontologies in the Semantic Web
Knowledge-Based Systems Chapter 17.
Artificial Intelligence Chapter 17 Knowledge-Based Systems
Rules, RIF and RuleML.
ece 720 intelligent web: ontology and beyond
Triple Stores.
Knowledge Representation and Inference
Artificial Intelligence
Assignment-2 due now Enterprise Architecture Conference Sat. Oct 27
CS 416 Artificial Intelligence
Logic: Domain Modeling /Proofs + Computer Science cpsc322, Lecture 22
Computer Science cpsc322, Lecture 20
Methods of Proof Chapter 7, second half.
Artificial Intelligence Chapter 17 Knowledge-Based Systems
Scalable and Efficient Reasoning for Enforcing Role-Based Access Control
Triple Stores.
Representations & Reasoning Systems (RRS) (2.2)
Presentation transcript:

WIMS 2014, June 2-4Thessaloniki, Greece1 Optimized Backward Chaining Reasoning System for a Semantic Web Hui Shi, Kurt Maly, and Steven Zeil Contact:

2 Outline Problem –Semantic web subject to changes –How to scale a reasoner to big data? Background –Knowledge base using ontologies –Inference strategies –Benchmarks –Query optimization Integrated optimized backward chaining –Selection function –Switching resolution methods –Avoidance of non-termination – OLDT –Owl:sameAs optimization Evaluation Conclusions WIMS 2014, June 2-4Thessaloniki, Greece

3 Problem Efficiency of reasoning in the face of large scale and frequent changes within a question/answer system over a semantic web Issue –Forward chaining scales well for fixed knowledge bases –Backward chaining can handle changes in knowledge base but does not scale WIMS 2014, June 2-4Thessaloniki, Greece

Background Existing semantic application: question/answer systems –Libra, Cimple, Arnetminer Semantic Web –Resource Description Framework(RDF) –Web Ontology Language (OWL) for specific knowledge domains –SPARQL query language for RDF –SWRL rule language Reasoning systems –Jena proprietary Jena rules –Pellet and KANON –ORACLE 11g –OWLIM WIMS 2014, June 2-4Thessaloniki, Greece 4

5 Background Knowledge base (KB) –Ontologies –Representation formalism: Description Logic (DL) Inference methods for First Order Logic –Materialization and forward chaining pre-computes inferred truths and starts with the known data suitable for frequent computation of answers with data that are relatively static Owlim and Oracle –Query-rewriting and backward chaining expands the queries and starts with goals suitable for efficient computation of answers with data that are dynamic and infrequent queries Virtuoso WIMS 2014, June 2-4Thessaloniki, Greece

Background Benchmarks evaluate and compare the performances of different reasoning systems –The Lehigh University Benchmark (LUBM) –The University Ontology Benchmark (UOBM) 6WIMS 2014, June 2-4Thessaloniki, Greece

Background Query optimization – issues –Query (conjunction of individual clauses) optimization over databases – well understood –Having reasoner -> uncertainty regarding the size of solution space associated with resolving individual clauses –Query optimization in the presence of such uncertainty Dynamic Optimization with an Interposed Reasoner A greedy ordering of the proofs of the individual clauses according to estimated sizes anticipated for the proof results Deferring joins of results from individual clauses where such joins are likely to result in excessive combinatorial growth of the intermediate solution WIMS 2014, June 2-4Thessaloniki, Greece 7

Hybrid reasoner Motivation example Assume fully materialized KB Harvester adds new fact: student0 enrolled course0 Query ‘Who is enrolled in course 0?’ ok Assume fact Porf0 teaches course0 in KB Query “Who is being taught by Prof0?” not ok as simple lookup; needs reasoning with rule such as: enrolledIn(?Student,?Course?), teaches(?Faculty,?Course) :- isTaughtBy(?Student,?faculty) WIMS 2014, June 2-4Thessaloniki, Greece 8

Optimized Backward Chaining Problem –Generate a query response for a given query pattern based on a specific rule set (RDFS, Horst, custom) Four Optimizations –Ordered Selection Function –Switching between Binding Propagation and Free Variable Resolution –Avoid Repetition and Non-Termination (OLDT) –owl:sameAs Optimization WIMS 2014, June 2-4Thessaloniki, Greece9

Dynamic Selection of Propagation Mode Suppose that: –we have a rule body containing clauses (?x p1 ?y) and (?y p2 ?z) –we have already proven that the first clause can be satisfied using value pairs {(x 1, y 1 ), (x 2,y 2 ),…(x n,y n )}. WIMS 2014, June 2-4Thessaloniki, Greece10

Dynamic Selection of Propagation Mode Binding propagation mode –the bindings from the earlier solutions are substituted into the upcoming clause to yield multiple instances of that clause as goals for subsequent proof –(y 1 p2 ?z), (y 2 p2 ?z), …, (y n p2 ?z) Free variable resolution mode –a single proof is attempted of the upcoming clause in its original form, with no restriction upon the free variables in that clause –(?y p2 ?z) WIMS 2014, June 2-4Thessaloniki, Greece11

Dynamic Selection of Propagation Mode: Example Suppose we have an earlier body clause 1: “?y type Course” and a subsequent body clause 2: “?x takesCourse ?y”. –1.749 seconds to prove body clause 1 –average of seconds to prove body clause 2 for a given value of ?y from the proof of body clause 1. –86,361 students satisfying variable ?x –0.235 *86,361=20,295 seconds with binding propagation –2.612 seconds to resolve the second clause in free variable resolution WIMS 2014, June 2-4Thessaloniki, Greece12

Dynamic Selection of Propagation Mode –Dynamically switch between modes based upon the size of the partial solutions obtained Let n denote the number of solutions that satisfy an already proven clause Let t denote the threshold used to dynamically select between modes If n≤t, then the binding propagation mode will be selected If n>t, then the free variable resolution mode will be selected The larger the threshold is, the more likely binding propagation mode will be selected. WIMS 2014, June 2-4Thessaloniki, Greece13

Calculation of Threshold t –Let join 1 denote the time spent on the join operations in binding propagation mode –Let join 2 denote the time spent on the join operations in free variable resolution mode –Let proof 1 i denote the time of proving first clause with i free variables and proof 2 j be the average time of proving new specialized form with j free variables. (i ∈ [1,3], j ∈ [0,2]) –Let proof 3 k denote the time of proving second clause with k free variables (k ∈ [1,3]) Compare the time spent on binding propagation mode and free variable resolution mode to determine t. Binding propagation is favored when proof 1 i + proof 2 j * n + join 1 < proof 1 i + proof 3 k + join 2 t = floor(proof 3 k / proof 2 j ) WIMS 2014, June 2-4Thessaloniki, Greece 14

Calculation of Threshold t To estimate proof 3 k and proof 2 j –we record the time spent on proving goals with different numbers of free variables –after we have recorded a sufficient number of proof times,we compute the average time spent on goals with k free variables and j free variables respectively Start with historical default value Update the threshold several times when answering a particular query WIMS 2014, June 2-4Thessaloniki, Greece15

Evaluation Time (ms), Dynamic selection Time (ms), Binding propagation only Time (ms), Free variable resolution only Query Query21,0601,34121,278 Query Query ,572 Query ,323 Query61,170592,94419,968 Query71,341551,82220,217 Query81,684513,77340,061 Query91,591524,78720,841 Query ,07819,734 Query ,141 Query ,313 Query ,528 Query WIMS 2014, June 2-4Thessaloniki, Greece 16

Overall Performance LUBM(1)LUBM(40) Time (ms), Opt. Backwd Time (ms), OWLIM -SE Time (ms), Opt. Backwd Time (ms), OWLIM -SE Loading time 2,9009,60095,000350,000 Query ,40026 Query ,1005,100 Query Query ,90014 Query Query ,0005,300 Query ,00054 Query ,0003,000 Query ,0004,400 Query , Query Query ,60011 Query Query ,2002,500 WIMS 2014, June 2-4Thessaloniki, Greece 17 LUBM(1) = 100,839 LUBM(40) = 5,307,754

18 Conclusions We have developed optimizations for a backward chaining algorithm New optimized algorithm outperformed one of the best forward-chaining reasoner in scenarios where the knowledge base is subject to frequent change WIMS 2014, June 2-4Thessaloniki, Greece