A Better Algorithm for Finding Planar Subgraph Gruia Călinescu Cristina G. Fernandes Ulrich Finkler Howard Karloff.

Slides:



Advertisements
Similar presentations
Bart Jansen 1.  Problem definition  Instance: Connected graph G, positive integer k  Question: Is there a spanning tree for G with at least k leaves?
Advertisements

Covers, Dominations, Independent Sets and Matchings AmirHossein Bayegan Amirkabir University of Technology.
Chapter 8 Topics in Graph Theory
Colorings of graphs and Ramsey’s theorem
The swap edges of a multiple source routing tree * 樹德資工 † 台大資工 Bang Ye Wu* Chih-Yuan Hsiao † Kun-Mao Chao †
Convex drawing chapter 5 Ingeborg Groeneweg. Summery What is convex drawing What is convex drawing Some definitions Some definitions Testing convexity.
2/14/13CMPS 3120 Computational Geometry1 CMPS 3120: Computational Geometry Spring 2013 Planar Subdivisions and Point Location Carola Wenk Based on: Computational.
A Separator Theorem for Graphs with an Excluded Minor and its Applications Paul Seymour Noga Alon Robin Thomas Lecturer : Daniel Motil.
The Divide-and-Conquer Strategy
Combinatorial Algorithms
Graph Theory Chapter 9 Planar Graphs 大葉大學 資訊工程系 黃鈴玲.
CS774. Markov Random Field : Theory and Application Lecture 17 Kyomin Jung KAIST Nov
Approximating Maximum Edge Coloring in Multigraphs
The Analysis and Design of Approximation Algorithms for the Maximum Induced Planar Subgraph Problem Kerri Morgan Supervisor: Dr. G. Farr.
Minimum Spanning Trees. 2 有權重的圖 * 很多圖形演算法的問題都假設其輸入為有權重 的圖形. * 這裡我們假設權重都定在邊上面, 且權重值都 為正, 例如請參考上圖所顯示的圖形. a b c d e f gh G=(V,E)
Graph V(G 1 )={0, 1, 2, 3, 4, 5, 6, 7, 8, 9} E(G 1 )={(0, 2), (0, 3), (1, 4), (2, 3), (2, 5), (2, 6), (3, 6), (3, 7), (4, 7), (5, 6), (5,
Convex Grid Drawings of 3-Connected Plane Graphs Erik van de Pol.
Graph Theory Graph theory is the study of the properties of graph structures. It provides us with a language with which to talk about graphs.
10215: The Largest/Smallest Box... ★ 題組: Problem Set Archive with Online Judge 題號: 10215: The Largest/Smallest Box... 解題者:張維珊 解題日期: 2006 年 4 月 17 日 題意:
What is the next line of the proof? a). Let G be a graph with k vertices. b). Assume the theorem holds for all graphs with k+1 vertices. c). Let G be a.
Computational Geometry Seminar Lecture 1
按一下以編輯母片標題樣式 按一下以編輯母片 第二層 第三層 第四層 第五層 1 按一下以編輯母片標題樣式 按一下以編輯母片 第二層 第三層 第四層 第五層 1 Problem E: Jolly Jumpers A sequence of n > 0 integers is called a jolly.
: The largest Clique ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11324: The largest Clique 解題者:李重儀 解題日期: 2008 年 11 月 24 日 題意: 簡單來說,給你一個 directed.
Matlab Assignment Due Assignment 兩個 matlab 程式 : Eigenface : Eigenvector 和 eigenvalue 的應用. Fractal : Affine transform( rotation, translation,
Johnson’s algorithm Johnson’s演算法可用於計算All pairs shortest path問題。
: Ahoy, Pirates! ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11402: Ahoy, Pirates! 解題者:李重儀 解題日期: 2008 年 8 月 26 日 題意:有一個海盜島有 N 個海盜,他們的編號 (id)
: Count DePrimes ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11408: Count DePrimes 解題者:李育賢 解題日期: 2008 年 9 月 2 日 題意: 題目會給你二個數字 a,b( 2 ≦ a ≦ 5,000,000,a.
Is the following graph Hamiltonian- connected from vertex v? a). Yes b). No c). I have absolutely no idea v.
: Problem G e-Coins ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10306: Problem G e-Coins 解題者:陳瀅文 解題日期: 2006 年 5 月 2 日 題意:給定一個正整數 S (0
: A-Sequence ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10930: A-Sequence 解題者:陳盈村 解題日期: 2008 年 5 月 30 日 題意: A-Sequence 需符合以下的條件, 1 ≤ a.
: Beautiful Numbers ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11472: Beautiful Numbers 解題者:邱經達 解題日期: 2011 年 5 月 5 日 題意: 若一個 N 進位的數用到該.
Approximation Algorithms for the Traveling Salesperson Problem.
A Search Procedure for Hamilton Paths and Circuits Frank Rubin JACM, Vol. 21, No. 4, pp , Oct
1 523: Minimum Transport Cost ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 523: Minimum Transport Cost 解題者:林祺光 解題日期: 2006 年 6 月 12 日 題意:計算兩個城市之間最小的運輸成本,運輸.
1 Separator Theorems for Planar Graphs Presented by Shira Zucker.
: Problem E Antimatter Ray Clearcutting ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11008: Problem E Antimatter Ray Clearcutting 解題者:林王智瑞.
Introduction Outline The Problem Domain Network Design Spanning Trees Steiner Trees Triangulation Technique Spanners Spanners Application Simple Greedy.
: Searching for Nessy ★☆☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 11044: Searching for Nessy 解題者:王嘉偉 解題日期: 2007 年 5 月 22 日 題意: 給定 case 數量.
Approximation Algorithms Motivation and Definitions TSP Vertex Cover Scheduling.
: Place the Guards ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11080: Place the Guards 解題者:陳盈村 解題日期: 2008 年 3 月 26 日 題意:有一個國王希望在他的城市裡佈置守衛,
: SAM I AM ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11419: SAM I AM 解題者:李重儀 解題日期: 2008 年 9 月 11 日 題意: 簡單的說,就是一個長方形的廟裡面有敵人,然 後可以橫的方向開砲或縱向開砲,每次開砲可以.
1 Refined Search Tree Technique for Dominating Set on Planar Graphs Jochen Alber, Hongbing Fan, Michael R. Fellows, Henning Fernau, Rolf Niedermeier, Fran.
:Rings and Glue ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10301: Rings and Glue 解題者:施博修 解題日期: 2011 年 5 月 18 日 題意:小約翰有了個大麻煩,他不小心將 rings.
Graph Theory Ch6 Planar Graphs. Basic Definitions  curve, polygon curve, drawing  crossing, planar, planar embedding, and plane graph  open set  region,
Graph Theory Chapter 6 Planar Graphs Ch. 6. Planar Graphs.
Approximating Minimum Bounded Degree Spanning Tree (MBDST) Mohit Singh and Lap Chi Lau “Approximating Minimum Bounded DegreeApproximating Minimum Bounded.
Graph Theory Chapter 7 Eulerian Graphs 大葉大學 (Da-Yeh Univ.) 資訊工程系 (Dept. CSIE) 黃鈴玲 (Lingling Huang)
Fan-planar Graphs: Combinatorial Properties and Complexity results Carla Binucci, Emilio Di Giacomo, Walter Didimo, Fabrizio Montecchiani, Maurizio Patrignani,
Graph Theory Chapter 6 Matchings and Factorizations 大葉大學 (Da-Yeh Univ.) 資訊工程系 (Dept. CSIE) 黃鈴玲 (Lingling Huang)
Computational Geometry Piyush Kumar (Lecture 10: Point Location) Welcome to CIS5930.
V Spanning Trees Spanning Trees v Minimum Spanning Trees Minimum Spanning Trees v Kruskal’s Algorithm v Example Example v Planar Graphs Planar Graphs v.
Chapter 3 Trees and Forests 大葉大學 資訊工程系 黃鈴玲
CS270 Project Overview Maximum Planar Subgraph Danyel Fisher Jason Hong Greg Lawrence Jimmy Lin.
6.1.3 Graph representation.
4-3~ 鄭力瑋. concave polygon:convex polygon: Convex polygons 「凸」的定義是:圖形內任意兩點的連線不會經過圖形外部。
Optimal polygon triangulation B 廖柏翰 – 組長 B 陳裕仁 B 詹燿鴻 B 蔡宗翰 B 林承毅.
大葉大學 資訊工程系 黃鈴玲  G. Agnarsson and R. Greenlaw, Graph Theory: Modeling, Applications, and Algorithms, Pearson,  G. Chartrand and O. R. Oellermann,
Approximation Algorithms by bounding the OPT Instructor Neelima Gupta
1 CS270 Project Overview Maximum Planar Subgraph Danyel Fisher Jason Hong Greg Lawrence Jimmy Lin.
Outline 1 Properties of Planar Graphs 5/4/2018.
Chapter 10 Independence, Dominance, and Matchings
Gaph Theory Planar Graphs
Ch09 _2 Approximation algorithm
GRAPH THEORY Properties of Planar Graphs Ch9-1.
6.1.3 Graph representation.
GRAPH THEORY Properties of Planar Graphs Ch9-1.
Drawing a graph
Presentation transcript:

A Better Algorithm for Finding Planar Subgraph Gruia Călinescu Cristina G. Fernandes Ulrich Finkler Howard Karloff

Introduction 4/9-approxi. algorithm for maximum planar subgraph problem 2/3-approxi. algorithm for Outer-planar subgraphs( all vertices on the boundary) Maximum planar subgraph problem and its complement ( removing as few edges as possible to leave a planar subgraph) are Max SNP-hard

Maximum planar subgraph problem given a graph G, find a planar subgraph of G with the maximum number of edges. NP-complete The simplest algorithm : Spanning tree (assume G is connected.) Maximal planar subgraph : output any planar subgraph to which the addition of any new edges would violate planarty.

Motivation Spanning tree of G achieves a performance ratio of 1/3. A connected spanning subgraph of G whose cycles are triangles, besides being planar, has one more edge per triangle than a spanning tree of G has.

Definition A triangular cactus is a graph whose cycles if any are triangles and such that all edges appear in some cycle. A triangular structure is a graph whose cycles are triangles.

A greedy algorithm A for G with bounded degree. Performance ratio is 7/18. Linear time First, A greedily constructs a maximal triangular cactus in G Second, A extends triangular cactus to triangular structure.

Algorithm A Starting with E 1 =Ø, repeatedly (as long as possible) find a triangle T whose vertices are in different components of G[E 1 ], and add the edges of T to E 1. Let S 1 = G[E 1 ]. Starting with E 2 =E 1, repeatedly (as long as possible) find an edge e in G whose endpoints are in different components of G[E 2 ]., and add e to E 2. Let S 2 =G[E 2 ]. Output S 2.

Q1 : P-times? Yes! Linear time for bounded-degree graphs.

Q2 : Feasible? Yes. S 2 is indeed a triangular structure in G.

Q3 : ratio=7/18 ? OBS : ( # of edges of algorithm A ) = ( # of edges of spanning tree) + ( # of triangles in S 1 )

Q3 : (def1) H : maximum planar subgraph of G ( # of edges of H )=3n-6- t Where t : missing edges If t=0 then H is a triangulated graph ( # of faces of H ) ≥ 2n-4-2t each missing edges can destroy at most 2 triangles.

Q3 : (def2) k components in S 1. p i : ( # of triangles in i th component) p = sum of p i.

Q3 : ( 小結論 ) 在 S1 產生後, G 內所有的 triangle ,必有兩點在 S1 裡的同一個 component 內 →H 內所有的 triangle ,必有兩點在 S1 裡的同一個 component 內 (H is a subgraph of G) → H 內任一個 triangle ,存在一個 edge e , such that e 的兩端點在 S1 裡的某一個 component 內 小結論: ( # triangles in H) ≤ 2*( # of e in H ) 每個 e 可能由 2 個 triangle 共用

Q3 : (def3) H’ : subgraph of H induced by edges of H whose endpoints in the same component of S 1. ( # of vertices of i th component of S 1 )=2p i +1 H’ 最多有 edges 2(6p-3k) ≥ 2E(H’) ≥ ( # of triangles in H) ≥ 2n-4- 2t ≥ by 小結論 ≥ by Q3 (def1)

Q3 : (end)

Q4 : tight ? S : any connected triangular cactus with p triangles. (# 0f v=2p+1) S’ : supergraph of S (f=2n- 4=2(2p+1)-4)=4p-2 G : 在每一個 face 加一個點再補 上邊 (# of v=2p+1+4p-2=6p-1) (# of edges = 3(6p-1)-6)=18p-9

Q4 : (tight?) Input : G S1=S S2=S + 每個 face 中的一個紅色邊 E(S2)=E(S)+(4p-2) =3p+4p-2 =7p-2 Ratio=(7p-2)/(18P-9)

A better algorithm B Algorithm B (ratio=4/9) Let S 1 = maximum triangular cactus in G. Starting with E 2 =E 1, repeatedly (as long as possible) find an edge e in G whose endpoints are in different components of G[E 2 ]., and add e to E 2. Let S 2 =G[E 2 ]. Output S 2.

Q1 : P-time? By [CN85] and [GS85], algorithm for graphic matroid parity runs in time O(m 3/2 nlog 6 n). Maximum triangular cactus can be obtained from graphic matroid parity in time O(n)

Q2 : feasible? Yes ! Output of algorithm A is feasible.

Q3 : ratio=4/9 (p.1) According to Matching Theory, Lovász and Plummer[LP86], we know The number of triangles in a maximum triangular cactus in G = the mininmum of Ф(P,Q) taken over all valid pairs (P,Q) for G where

Q3 : ratio=4/9 (p.2) Theorem 2.3 : then

Q4 : tight ? (p.1) G’ : triangular plane graph with n’ vertices ( and 2n’-4 triangles). G : for all faces, add a new vertices in the face and adjacent to all three vertices on the boundary of that face. G has n’+2n’-4 vertices and 3(3n’-4)- 6=9n’-18 edges.

Q4 : tight ? (p.2) The following lemma is observed in [LP86,p.440] If S is triangular structure with t triangles in G then there is a matching in G of size t. Any edge in G has at least one endpoint in V’. Therefore a maximum matching in G has at most n’ edges. We conclude that S has at most n’ triangles

Q4 : tight ? (p.3) Input : G Output : S 2 has at most n’ triangles.

Outerplanar subgraph An outerplanar graph G is a maximal outerplanar graph if no edge can be added without losing outerplanarity. Note: algorithm B produces outerplanar graphs, so it is a approximation algorithm for maximum outerplanar subgraph.

Outerplanar graph has at most 2n-3 edges 用國中的觀念 n 多邊形可以割成 (n-2) 個三角 形 ( 內角和 =(n-2)*180) Face=(n-2)+1 By Euler’s formula : n – m + f =2 n-m+ (n-1)=2 2n-3 =m

Ratio=2/3 用 algorithm B 的分析 將分母改為 2n-3

Tight ? There are outerplanar graph H i with 2i vertices and 3i-2 edges which do not have any triangles.

The complexity of the problem MAXIMUM PLANAR SUBGRAPH is Max SNP-hard. NPD is Max SNP-hard.

Open problems How large a performance ratio one can achieve is an obvious one. Is there a linear-time approximation algorithm for MAXIMUM PLANAR SUBGRAPH with performance ratio 1/3+ε? Is there any approximation algorithm with a constant performance ratio for NPD?