Ozone Depletion Measurements In Souther Patagonia

Slides:



Advertisements
Similar presentations
WMO/UNEP 7th ORM, Geneva May French contribution to ozone research and monitoring S. Godin-Beekmann Service dAéronomie – IPSL, CNRS, Paris,
Advertisements

GEMS-Aerosol WP_AER_4: Evaluation of the model and analysis Lead Partners: NUIG & CNRS-LOA Partners: DWD, RMIB, MPI-M, CEA- IPSL-LSCE,ECMWF, DLR (at no.
OMI follow-on Project Toekomstige missies gericht op troposfeer en klimaat Pieternel Levelt, KNMI.
Ongoing Raman lidar developments at CEILAP. (A) Multiwavelength Scannning Raman Lidar at Los Andes Mountains (B) Continuous operation Raman Lidar station.
Studying the Physical Properties of the Atmosphere using LIDAR technique Dinh Van Trung and Nguyen Thanh Binh, Nguyen Dai Hung, Dao Duy Thang, Bui Van.
Preliminary results of the seasonal ozone vertical trends at OHP France Maud Pastel, Sophie Godin-Beekmann Latmos CNRS UVSQ, France  NDACC Lidar Working.
Centro de Investigaciones en Láseres y Aplicaciones (LASER RESEARCH CENTER AND APPLICATIONS ) (CITEFA-CONICET) Buenos Aires - Argentina Collaboration between.
2013 LIDAR'S TELESCOPE AUTO-ALIGNMENT SYSTEM FOR CTA Auteurs principaux : Mr. PALLOTTA, Juan Co-auteurs : Dr. RISTORI, Pablo 1 ; Dr. OTERO, Lidia 1 ; Mr.
Measured parameters: particle backscatter at 355 and 532 nm, particle extinction at 355 nm, lidar ratio at 355 nm, particle depolarization at 355 nm, atmospheric.
1 Centrum Badań Kosmicznych PAN, ul. Bartycka 18A, Warsaw, Poland Vertical temperature profiles in the Venus.
Remote Sensing of the Oceans and Atmosphere Tom Collow December 10, 2009.
NDACC Working Group on Water Vapor NDACC Working Group on Water Vapor Bern, July 5 -7, 2006 Raman Lidar activities at Rome - Tor Vergata F.Congeduti, F.Cardillo,
Atmospheric structure from lidar and radar Jens Bösenberg 1.Motivation 2.Layer structure 3.Water vapour profiling 4.Turbulence structure 5.Cloud profiling.
TReSS (Transportable Remote Sensing Station) in Tamanrasset Overview of TReSS Status of implementation on April 1 st 2006 Operations in the framework of.
Results obtained with the Tropospheric Ozone DIAL System Using a YAG Laser and Raman Cells (A53Q – 0439) J. T. Sullivan 1,2, T. J. McGee.
Frascati nov 2009 A.-C. Engvall, A. Stohl, N. I. Kristiansen, A. Fahre Vik, K. Tørseth, and others Norwegian Institue for Air Research NILU Dept.
Chapter 2: Satellite Tools for Air Quality Analysis 10:30 – 11:15.
UAH Ground-based Ozone Lidar - A New NDACC Lidar Station Member NDACC Lidar Working Group Meeting, NASA/JPL, Table Mountain, CA Nov. 4, 2013
Direct Radiative Effect of aerosols over clouds and clear skies determined using CALIPSO and the A-Train Robert Wood with Duli Chand, Tad Anderson, Bob.
LIDAR: Introduction to selected topics
Introduction A new methodology is developed for integrating complementary ground-based data sources to provide consistent ozone vertical distribution time.
GEWEX/GlobVapour Workshop, Mar 8-10, 2011, ESRIN, Frascati, Italy WATER VAPOUR RAMAN LIDARS IN THE UTLS: Where Are We Now? or “The JPL-Table Mountain Experience”
G O D D A R D S P A C E F L I G H T C E N T E R Goddard Lidar Observatory for Winds (GLOW) Wind Profiling from the Howard University Beltsville Research.
B. Gentry/GSFCSLWG 06/29/05 Scaling Ground-Based Molecular Direct Detection Doppler Lidar Measurements to Space Using Wind Profile Measurements from GLOW.
NORS project (Network Of ground-based Remote Sensing Observation ) Contribution of the CNRS LIDAR team  Maud Pastel, Sophie Godin-Beekmann Latmos CNRS.
MIR OZONE ISSUES Horizontal (STE) and vertical transport (long life time in UTLS) Photochemical production by precursors (biomass burning, lightning,..)
1 Satellite data assimilation for air quality forecast 10/10/2006.
Operation of Backscatter Lidar at Buenos Aires (34.6 S / 58.5 W) for the Retrieval and Analysis the Atmospheric Parameters in Cirrus Clouds, Tropopause.
Multi-wavelength Depolarization & Raman lidar, High Spectral Resolution Lidar: Setup and modelization of the Argentinean Aerosol Monitoring Stations Pablo.
Mike Newchurch 1, Shi Kuang 1, John Burris 2, Steve Johnson 3, Stephanie Long 1 1 University of Alabama in Huntsville, 2 NASA/Goddard Space Flight Center,
UV-VISIBLE Spectrometers
Measurement Example III Figure 6 presents the ozone and aerosol variations under a light-aerosol sky condition. The intensity and structure of aerosol.
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
Latest results on the comparison between OMI and ground-based data at two European sites (Rome and Villeneuve d’Ascq) Virginie Buchard, Colette Brogniez,
Field Methods of Monitoring Atmospheric Systems Remote Sensing Copyright © 2006 by DBS.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
Royal Meteorological Institute of Belgium Validation of the method to retrieve the AOD and first preliminary results of the aerosol measurements campaign.
Planetary Boundary-layer Ozone Flux using Ozone DIAL and Compact Wind Aerosol Lidar (CWAL) in Huntsville AL Guanyu Huang 1, Michael J. Newchurch 1, Shi.
Characterization of Aerosols using Airborne Lidar, MODIS, and GOCART Data during the TRACE-P (2001) Mission Rich Ferrare 1, Ed Browell 1, Syed Ismail 1,
Radiative Atmospheric Divergence using ARM Mobile Facility, GERB data and AMMA stations –led by Tony Slingo, ESSC, Reading University, UK Links the ARM.
Measuring the Antarctic Ozone Hole with the new Ozone Mapping and Profiler Suite (OMPS) Natalya Kramarova, Paul Newman, Eric Nash, PK Bhartia, Richard.
Validation of OMI NO 2 data using ground-based spectrometric NO 2 measurements at Zvenigorod, Russia A.N. Gruzdev and A.S. Elokhov A.M. Obukhov Institute.
Geoscience Laser Altimeter System Aerosol and Cloud Observations by the GLAS Polar Orbiting Lidar Instrument NASA - Goddard Space Flight Center Launched.
Status of the Development of a Tropospheric Ozone Product from OMI Measurements Jack Fishman 1, Jerald R. Ziemke 2,3, Sushil Chandra 2,3, Amy E. Wozniak.
1 Monitoring Tropospheric Ozone from Ozone Monitoring Instrument (OMI) Xiong Liu 1,2,3, Pawan K. Bhartia 3, Kelly Chance 2, Thomas P. Kurosu 2, Robert.
Retrieval of biomass burning aerosols with combination of near-UV radiance and near -IR polarimetry I.Sano, S.Mukai, M. Nakata (Kinki University, Japan),
A new method for first-principles calibration
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
Jetstream 31 (J31) in INTEX-B/MILAGRO. Campaign Context: In March 2006, INTEX-B/MILAGRO studied pollution from Mexico City and regional biomass burning,
Airborne Sunphotometry and Closure Studies during the SAFARI-2000 Dry Season Campaign B. Schmid BAER/NASA Ames Research Center, Moffett Field, CA, USA.
Ball Aerospace & Technologies Corporation -
A Brief Overview of CO Satellite Products Originally Presented at NASA Remote Sensing Training California Air Resources Board December , 2011 ARSET.
Satellite Remote Sensing of the Air Quality Health Index Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar, Lok Lamsal, Dalhousie University.
UNIVERSITY OF BASILICATA CNR-IMAA (Consiglio Nazionale delle Ricerche Istituto di Metodologie per l’Analisi Ambientale) Tito Scalo (PZ) Analysis and interpretation.
Latmos UPMC/CNRS - ILRC 2015
S. Godin-Beekmann1, A. Pazmiño1, F. Goutail1, S. Khaykin1, M. R
Ozone monitoring with GOMOS-ENVISAT experiment version 6
Regional Radiation Center (RRC) II (Asia)
Huailin Chen, Bruce Gentry, Tulu Bacha, Belay Demoz, Demetrius Venable
Evaluation of total ozone recovery inside the Antarctic vortex
Diurnal Variation of Nitrogen Dioxide
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
Eureka Stratospheric Ozone Differential Absorption LIDAR:
An (almost) unexpected way to detect very thin diffuse (aged
Thule (Greenland) 76.5°N °W
GSFC Mobile Lidar Station Report T. McGee, J. Sullivan
Ozone Monitoring in Río Gallegos NDACC Station, Argentina
Eureka Stratospheric Ozone Differential Absorption LIDAR revived
Report on the atmospheric lidar observatory in McMurdo and Dome C
NDACC Lidar measurements at OHP
Presentation transcript:

Ozone Depletion Measurements In Souther Patagonia Elian Wolfram Centro de Investigaciones en Láseres y Aplicaciones (LASER RESEARCH CENTER AND APPLICATIONS ) (CITEDEF-CONICET) Buenos Aires - Argentina

Staff of Lidar Division of CEILAP Dr. Eduardo J. Quel /CITEDEF Dr. Elian Wolfram /CITEDEF-CONICET Dra. Lidia Otero /CITEDEF -CONICET Dr. Pablo Ristori /CITEDEF Ing. Marcelo Raponi/CITEDEF -PhD Sdt Ing. Jacobo Salvador/CITEDEF - PhD Std Ing. Juan Pallota/CITEDEF /PhD Std Ing. Ezequiel Pawelko /CITEDEF /PhD Std Geof. Gabriela Nicora/CITEDEF Fellow Lic. Facundo Orte/ANCYPT Fellow Tec. Daniela Bulnes/CITEDEF Est. Carla Repetto/UTN Fellow Tec. E. Martorella/CITEDEF Tec. Raúl D´Elía /CONICET Ing. J. C. Dworniczak/CITEDEF Ing. Francisco González/CITEDEF Tec. Osvaldo Vilar/CITEDEF

Staff of Lidar Division of CEILAP Peoples involved in Ozone Studies from Argentine Side French Partners Dr. Sophie Godin-Beekman LATMOS/IPSL/CNRS Dr. Florance Goutail LATMOS/UVSQ/CNRS Dr. Andrea Pazmiño LATMOS/UVSQ/CNRS Ing. Jacques Porteneuve (retired) Dr. Eduardo J. Quel /CITEDEF Dr. Elian Wolfram /CITEDEF-CONICET Dra. Lidia Otero /CITEDEF -CONICET Dr. Pablo Ristori /CITEDEF Ing. Marcelo Raponi/CITEDEF -PhD Sdt Ing. Jacobo Salvador/CITEDEF - PhD Std Ing. Juan Pallota/CITEDEF /PhD Std Ing. Ezequiel Pawelko /CITEDEF /PhD Std Geof. Gabriela Nicora/CITEDEF Fellow Lic. Facundo Orte/ANCYPT Fellow Tec. Daniela Bulnes/CITEDEF Est. Carla Repetto/UTN Fellow Tec. E. Martorella/CITEDEF Tec. Raúl D´Elía /CONICET Ing. J. C. Dworniczak/CITEDEF Ing. Francisco González/CITEDEF Tec. Osvaldo Vilar/CITEDEF

Two Remote Sensing Sites Río Gallegos 51.6º S ; 69.1º W Villa Martelli 34.5º S ; 58.5º W

Río Gallegos Site (CEILAP-RG) Province of Santa Cruz, Argentine Patagonia. Lat: 51º 36’ S, Lon: 69º 19’ W. Military Air Force Base, Río Gallegos - Fuerza Aérea Argentina (FFAA)

Instrumental Capabilities SAOZ Meteorological Data CEILAP-RG Site Radiometers UV - Visible Brewer Multi-Wavelength Aerosol Lidar Ozone DIAL AERONET Sunphotometer

Atmosphere Principle of LIDAR measurement Ligth Detection And Ranging Lidar Signal Altitude Back Scattering signal Backscatter radiation Altitude= ct/2 Aerosol Mie Scattering Rayleigh Scattering Emission (laser) Our measurements: Clean Night Condition 2-3 hs integration time Reception (Telescope)

DIAL SYSTEM Transmitter Lambda Physik LSX 210i Excimer laser (XeCl) Emitted wavelength 308 nm Emitted energy ~200 mJ/pulse (max. 300 mJ/pulse) Repetition rate 30 Hz (max. 100 Hz) Divergence 0.4 mrad Quantel 980 Nd-YAG Laser Emitted wavelength 1.06 m, 532 nm, 355 nm Emitted energy ~40 mJ/pulse (max. 130 mJ/pulse) @355 Repetition rate 30 Hz (max. 30 Hz) Divergence 0.6 mrad

DIAL SYSTEM Receiver Mechanical Chopper Fiber Optics Entrance Slit

DIAL SYSTEM Spectrometer 308 nm 387nm 355 nm 347 nm 332 nm Holographic Grating 3600 gr/mm Dispersion 0.3 nm/mm Spectral bandwidth 1 nm Transmittance @ 300 nm 40 %

Detection and Acquisition DIAL SYSTEM Detection and Acquisition 6 PMTs Hamamatsu Gated photomultipliers for 308, 355 nm Low dark current, adapted for photo counting Acquisition 6 Independent channels processing, stock of signals Discriminators 1/channel High speed counters 300 MHz 1024 time gates of 1 s (150 m) Max. count rate 40-60 counts/ s Chopper yes/not (trigger -> quartz crystal) On-line visualization: signals, slopes, profile & total O3

Little History of RG Site Events Campaign in Río Gallegos First Ozone Sonde DIAL Ozone Instrument Ready to measure Admission of DIAL Ozone Inst. To NDACC Network Transportation Of Instrument to Rio Gallegos Site UVO3Patagonia Start with Project 2nd Ozone Sonde Campaign Events SOLAR Campaign 2004 Jun 2005 Aug 2005-Dec 2006 Sep 2007 Dec 2008 Mar 2010 Mar 2011 Time

Statistics of Stratospheric Ozone Measurements Ozone DIAL Number of Samples Number of Samples 13

Admitted on Dec 2008

Lidar-ECC Sonde Comparison Comparison of averaged ozone profiles obtained from 5 quasi coincident ECC sondes (dotted line) and averaged lidar ozone profile (white line). The shadow area correspond to +/- 1s of lidar measurements and horizontal line correspond to +/- 1s of sondes. New differential absorption lidar for stratospheric ozone monitoring in Patagonia, South Argentina E A Wolfram et al 2008 J. Opt. A: Pure Appl. Opt. 10 104021 (7pp)   doi: 10.1088/1464-4258/10/10/104021 

Intercomparison Campaign Río Gallegos March 2010 Argentina – Chile collaboration 3 sondes launched in Río Gallegos site, collocated with DIAL during first week of March

Intercomparison OZITOS Campaign Río Gallegos March 2011 Argentina – Chile collaboration 3 sondes launched during the night in Río Gallegos site, collocated with DIAL during 2nd week of March 2011 OZone profIle aT RíO GallegoS

Validación de Satélites GOMOS -Rio Gallegos GOMOS limb flag IS applied here Collocation criteria: Measurements within 800 km and < 24 h Global validation of ENVISAT ozone profiles using lidar measurements J.A.E. Van Gijsel., D.P.J. Swart., J.-L. Baray, H. Claude, T. Fehr, P. Von Der Gathen., S. Godin- Beekmann., G.H. Hansen ., T. Leblanc, I.S. Mcdermid, Y.M. Meijer, H. Nakane, E.J. Quel, W. Steinbrecht, K.B. Strawbridge, B. Tatarov.And E.A. Wolfram. Special Issue on the Montreal Protocol in the International Journal of Remote Sensing 30, (15-16):3987-3994, 2009. 18

OMI NASA 19

Time Evolution of Total Ozone in Río Gallegos (2009) Study case 1 (October 3 and 4) Prolonged O3 Reduction Extreme Event (November 2009)

Study Case 1 of Ozone Hole overpass in RG Site during 2009 OMI/AURA Oct 2 2009 Oct 4 2009 Oct 6 2009

Time Evolution of Total Ozone in Río Gallegos (2009) Prolonged O3 Reduction Extreme Event (November 2009)

Study Case 2 Extreme Persist Ozone Hole over Río Gallegos 2009 2009 daily evolution of total ozone column for Río Gallegos measured with Brewer 124 spectrophotometer (blue open circles) and SAOZ spectrometer (black open diamonts), and OMI satellite measurement (red line).

UV Increase Produced by Ozone Reduction Total Ozone (DU)

Intensive Measurement Period 2006 August September October November December Total Ozone (DU) Altitude (km) Ozone Number Density [molec/cm3]

Intensive Measurement Period 2006 Anomaly August September October November December 34 Lidar Measurements ~4 hs average time each one 140 hrs. acquisition ~15 million laser shots

Passive Remote Sensing Instruments Río Gallegos Site Radiometer GUV 541 UV-B Radiometer UV-A Radiometer Pyranometer

UV Index at Río Gallegos Data Level 1.5 Period: August 1, 2005 – October 31 2006

New Capability of Temperature Lidar Profile in RG Site Comparison Lidar with HIRDLS/AURA-NASA ΔS < 500 Km ΔT ± 12 Hs Temperature Profiles With Correction by Aerosols using Lidar Rayleigh Mean ± 1σ dev HIRDLS Temperature Profiles Without Correction by Aerosols using Lidar Rayleigh N = 94 Measurements Error bars are plus and minus 1σ dev 1 Km Resolution HIRDLS

Observatorio Atmosférico de la Patagonia Austral (Atmospheric Observatory of Southern Patagonia) Visit of Cristina Fernandez March 2011, Inauguration MM-Wave Radiometer Nagoya University

Recent Publication –Congress Communications Journals – Proccedings -Global validation of ENVISAT ozone profiles using lidar measurements J.A.E. Van Gijsel., D.P.J. Swart., J.-L. Baray, H. Claude, T. Fehr, P. Von Der Gathen., S. Godin-Beekmann., G.H. Hansen ., T. Leblanc, I.S. Mcdermid, Y.M. Meijer, H. Nakane, E.J. Quel, W. Steinbrecht, K.B. Strawbridge, B. Tatarov.And E.A. Wolfram. Special Issue on the Montreal Protocol in the International Journal of Remote Sensing 30, (15-16):3987-3994, 2009.   -GOMOS ozone profile validation using ground-based and balloon sonde measurements J. A. E. van Gijsel, D. P. J. Swart, J.-L. Baray, H. Bencherif, H. Claude, T. Fehr, S. Godin-Beekmann, G. H. Hansen, P. Keckhut, T. Leblanc, I. S. McDermid, Y. J. Meijer, H. Nakane, E. J. Quel, K. Stebel, W. Steinbrecht, K. B. Strawbridge, B. I. Tatarov, and E. A. Wolfram Atmos. Chem. Phys. Discuss., 10, 8515–8551, 2010. www.atmos-chem-phys-discuss.net/10/8515/2010/ Published by Copernicus Publications on behalf of the European Geosciences Union. Received: 31 January 2010 – Accepted: 21 March 2010 – Published: 1 April 2010 -Extreme sunbathing: Three weeks of small total O3 columns and high UV radiation over the southern tip of South America during the 2009 Antarctic O3 hole season de Laat, A. T. J., R. J. van der A, M. A. F. Allaart, M. van Weele, G. C. Benitez, C. Casiccia, N. M. Paes Leme, E. Quel, J. Salvador, and E. Wolfram (2010), Geophys. Res. Lett., 37, L14805, doi:10.1029/2010GL043699 -Climatology Of Stratospheric Ozone Profiles In Río Gallegos, Argentina Wolfram, Elian; Salvador, Jacobo; D´Elía, Raúl; Godin-Beekmann, Sophie; Quel, Eduardo. Proceedings Of The 25th International Laser Radar Conference (Ilrc 2010), Vol.Ii, Pp.995-998. -Rayleigh lidar temperature profiles between 15-60 km during SOLAR campaign in Río Gallegos (51º55´s, 69º14´w), Argentina: methodology and results Salvador, Jacobo; Wolfram, Elian; D´Elía, Raúl; Godin-Beekman, Sophie; Quel, Eduardo. Proceedings of the 25th International Laser Radar Conference (ILRC 2010), Vol.II, pp.999-1002

Argentina-France Collaboration in Ozone Topics -Container (2002) -Electronic (2003) -Construction - Inversion Algorithm - SAOZ instrument (2008) -Data Interpretation Use of MIMOSA and MIMOSA-CHIM Models -PICS project UVO3Clim- Patagonie (2009-2011)

Summary The Atmospheric Observatory of Southern Patagonia is operative In December 2008, the Ozone DIAL joined to NDACC. Also in September 2009, SAOZ radiometer was admitted as NDACC instrument During days with vortex proximity, strong reductions of vertical ozone number density were observed. Depletions of 40 - 50% were measured in vertical profiles associated to ozone hole The preliminary analysis of ozone profiles show that the biggest impact of polar vortex over vertical ozone distribution in Río Gallegos is in the middle stratosphere, between 23-33 km

Outlook Study of stratospheric ozone depletion in the context of ozone recovery and climate change: Statistical analysis of temporal evolution of vortex overpasses over Southern Argentina in relation with climate indices and impact on UV radiation Evaluation of satellite observations using ozone vertical distribution measurements (lidar) and total ozone measurements (SAOZ, Brewer) Evaluation of Chemistry Transport Model long term simulations (e.g. Reprobus and SLIMCAT models) and Chemistry Climate Model simulations (CCMVAL II results) with respect to observations and statistical analyses. Collaboration with teams working on Antarctic surface climate??

Acknowledgements JICA (Japan International Cooperation Agency) Lidar Division Team NIES (Japan) LATMOS-IPSL/CNRS and French Team

Gracias Thanks ewolfram@citedef.gov.ar ewolfram@gmail.com www.division-lidar.com.ar www.uvo3patagonia.com.ar

Use of Laser as radiation source of remote sensing instruments CEILAP Lidar Division’s Capabilities Use of Laser as radiation source of remote sensing instruments LIDAR Instrument Development Gases Measurement Water Vapor Stratospheric Ozone Monitoring of Atmospheric Phenomena and Pollution Urban Pollution Biomass Burning Volcanic Ash Atmospheric Aerosols Monitoring of trace gases -Mean Latitudes Ozone Reduction -Ozone Hole Measurements SOLAR Campaign UVO3Patagonia Project Passive Remote Sensing UV-Vis Radiation Measurements Aerosol Optical Thickness (AERONET) Total Columns of O3 y NO2 (SAOZ)

Summary The stronger impact of ozone hole in surface UV radiation was observed during ozone hole dilution Also, overpass of poor ozone air masses over Rio Gallegos have high impact on UVI during summer Cloud cover modulate strongly the surface UV radiation, producing attenuation of 50% and increment of 20% in UVI (cloud border)