Operation Research Chapter 3 Simplex Method.

Slides:



Advertisements
Similar presentations
Chapter 5: Linear Programming: The Simplex Method
Advertisements

L17 LP part3 Homework Review Multiple Solutions Degeneracy Unbounded problems Summary 1.
SIMPLEX METHOD FOR LP LP Model.
Nonstandard Problmes Produced by E. Gretchen Gascon.
LECTURE 14 Minimization Two Phase method by Dr. Arshad zaheer
Dr. Sana’a Wafa Al-Sayegh
Copyright (c) 2003 Brooks/Cole, a division of Thomson Learning, Inc
Computational Methods for Management and Economics Carla Gomes Module 6a Introduction to Simplex (Textbook – Hillier and Lieberman)
L16 LP part2 Homework Review N design variables, m equations Summary 1.
Sections 4.1 and 4.2 The Simplex Method: Solving Maximization and Minimization Problems.
3.4 Artificial starting solution Page103
Computational Methods for Management and Economics Carla Gomes Module 8b The transportation simplex method.
Chapter 6 Linear Programming: The Simplex Method Section 3 The Dual Problem: Minimization with Problem Constraints of the Form ≥
The Simplex Method: Standard Maximization Problems
Operation Research Chapter 3 Simplex Method.
Minimization by Dr. Arshad zaheer
Linear Programming (LP)
5.6 Maximization and Minimization with Mixed Problem Constraints
D Nagesh Kumar, IIScOptimization Methods: M3L4 1 Linear Programming Simplex method - II.
MIT and James Orlin © Chapter 3. The simplex algorithm Putting Linear Programs into standard form Introduction to Simplex Algorithm.
LINEAR PROGRAMMING SIMPLEX METHOD.
Chapter 3 Linear Programming Methods 高等作業研究 高等作業研究 ( 一 ) Chapter 3 Linear Programming Methods (II)
Chapter 6 Linear Programming: The Simplex Method
The Two-Phase Simplex Method LI Xiao-lei. Preview When a basic feasible solution is not readily available, the two-phase simplex method may be used as.
Operations Research Assistant Professor Dr. Sana’a Wafa Al-Sayegh 2 nd Semester ITGD4207 University of Palestine.
Simplex method (algebraic interpretation)
Simplex Algorithm.Big M Method
ECE 556 Linear Programming Ting-Yuan Wang Electrical and Computer Engineering University of Wisconsin-Madison March
Topic III The Simplex Method Setting up the Method Tabular Form Chapter(s): 4.
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Learning Objectives for Section 6.4 The student will be able to set up and solve linear programming problems.
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming: The Simplex Method Chapter 5.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
The Simplex Method Updated 15 February Main Steps of the Simplex Method 1.Put the problem in Row-Zero Form. 2.Construct the Simplex tableau. 3.Obtain.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Public Policy Modeling Simplex Method Tuesday, October 13, 2015 Hun Myoung Park, Ph.D. Public Management & Policy Analysis Program Graduate School of International.
Chapter 6 Linear Programming: The Simplex Method Section R Review.
Simplex Method Adapting to Other Forms.  Until now, we have dealt with the standard form of the Simplex method  What if the model has a non-standard.
Solving Linear Programming Problems: The Simplex Method
Business Mathematics MTH-367 Lecture 15. Chapter 11 The Simplex and Computer Solutions Methods continued.
1 5.7 Initialization Revisited  :  Motivation: a solution for the transformed system is feasible for the original system if and only if all the. a solution.
Chapter 6 Linear Programming: The Simplex Method Section 3 The Dual Problem: Minimization with Problem Constraints of the Form ≥
Mechanical Engineering Department 1 سورة النحل (78)
1 1 Slide © 2005 Thomson/South-Western Linear Programming: The Simplex Method n An Overview of the Simplex Method n Standard Form n Tableau Form n Setting.
Chapter 4 Linear Programming: The Simplex Method
Chapter 6 Linear Programming: The Simplex Method Section 4 Maximization and Minimization with Problem Constraints.
1 Chapter 4 The Simplex Algorithm PART 2 Prof. Dr. M. Arslan ÖRNEK.
OR Chapter 8. General LP Problems Converting other forms to general LP problem : min c’x  - max (-c)’x   = by adding a nonnegative slack variable.
University of Colorado at Boulder Yicheng Wang, Phone: , Optimization Techniques for Civil and Environmental Engineering.
An-Najah N. University Faculty of Engineering and Information Technology Department of Management Information systems Operations Research and Applications.
Simplex Method Simplex: a linear-programming algorithm that can solve problems having more than two decision variables. The simplex technique involves.
 LP graphical solution is always associated with a corner point of the solution space.  The transition from the geometric corner point solution to the.
Copyright © 2006 Brooks/Cole, a division of Thomson Learning, Inc. Linear Programming: An Algebraic Approach 4 The Simplex Method with Standard Maximization.
1 LP-3 Symplex Method. 2  When decision variables are more than 2, it is always advisable to use Simplex Method to avoid lengthy graphical procedure.
Decision Support Systems INF421 & IS Simplex: a linear-programming algorithm that can solve problems having more than two decision variables.
(iii) Simplex method - I D Nagesh Kumar, IISc Water Resources Planning and Management: M3L3 Linear Programming and Applications.
The Simplex Method. and Maximize Subject to From a geometric viewpoint : CPF solutions (Corner-Point Feasible) : Corner-point infeasible solutions 0.
1 Two-Phase Simplex Method file Simplex3_AMII_05b_gr Rev. 1.4 by M. Miccio on December 17, 2014 from a presentation at the Fuqua School of Business MIT.
EMGT 6412/MATH 6665 Mathematical Programming Spring 2016
Solving Linear Program by Simplex Method The Concept
Simplex Algorithm.Big M Method
Perturbation method, lexicographic method
10CS661 OPERATION RESEARCH Engineered for Tomorrow.
Linear programming Simplex method.
The Two-Phase Simplex Method
Chapter 4 Linear Programming: The Simplex Method
The Simplex Method: Standard Minimization Problems
Linear programming Simplex method.
Simplex method (algebraic interpretation)
Presentation transcript:

Operation Research Chapter 3 Simplex Method

Operation Research: An Introduction By Dr: Alaa Sagheer Chapter 2 Outline: Part II Introduction The Linear Programming in Standard Form Simplex Method Artificial starting Solution The M-Method The Two-Phase Method Operation Research: An Introduction By Dr: Alaa Sagheer

Operation Research: An Introduction By Dr: Alaa Sagheer Artificial Starting Solution (1): In our presentation of the Simplex method we have used the slack variables as the starting solution. These were coming from the standardized form of constraints that are type of “” However, if the original constraint is a “≥” or “=” type of constraint, we no longer have an easy starting solution. Therefore, Artificial Variables are used in such cases. An artificial variable is a variable introduced into each equation that has a surplus variable. To ensure that we consider only basic feasible solutions, an artificial variable is required to satisfy the nonnegative constraint. The two method used are: The M- method The Two-phase method Operation Research: An Introduction By Dr: Alaa Sagheer

Operation Research: An Introduction By Dr: Alaa Sagheer Artificial Starting Solution (2): The M-Method The M-method starts with the LP in the standard form For any equation (i) that does not have slack, we augment an artificial variable Ri Given M is sufficiently large positive value, The variable Ri is penalized in objective function using (-M Ri ) in case of maximization and (+ M Ri ) in case of minimization. ( Penalty Role) Operation Research: An Introduction By Dr: Alaa Sagheer

Operation Research: An Introduction By Dr: Alaa Sagheer Artificial Starting Solution (3): The M-Method ( Example) Minimized Subject to: Operation Research: An Introduction By Dr: Alaa Sagheer

Operation Research: An Introduction By Dr: Alaa Sagheer Artificial Starting Solution (4): The M-Method ( Solution) Minimized By subtracting surplus x3 in second constraint and adding slack x4 in third constraint, thus we get: Subject to: Operation Research: An Introduction By Dr: Alaa Sagheer

Operation Research: An Introduction By Dr: Alaa Sagheer Artificial Starting Solution (5): By using artificial variables in equations that haven’t slack variables and penalized them in objective function, we got: Minimized Subject to: Then, we can use R1 , R2 and x4 as the starting basic feasible solution. Operation Research: An Introduction By Dr: Alaa Sagheer

Operation Research: An Introduction By Dr: Alaa Sagheer Artificial Starting Solution (6): Solution x4 R2 R1 x3 x2 x1 Basic -M -1 -4 z 3 1 6 4 2 New z-row = Old z-row + M* R1-row + M*R2 -row Solution x4 R2 R1 x3 x2 x1 Basic 9M -M -1+4M -4+7M z 3 1 6 -1 4 2 Artificial variables become zero Operation Research: An Introduction By Dr: Alaa Sagheer

Operation Research: An Introduction By Dr: Alaa Sagheer Artificial Starting Solution (7): Thus, the entering value is (-4+7M) because it the most positive coefficient in the z-row. The leaving variable will be R1 by using the ratios of the feasibility condition After determining the entering and leaving variable, the new tableau can be computed by Gauss-Jordan operations as follow: Solution x4 R2 R1 x3 x2 x1 Basic 4+2M (4-7M)/3 -M (1+5M)/3 z 1 1/3 2 -4/3 -1 5/3 3 -1/3 The last tableau shows that x2 is the entering variable and R2 is the leaving variable. The simplex computation must thus continued for two more iteration to satisfy the optimally condition. The results for optimality are: Operation Research: An Introduction By Dr: Alaa Sagheer

Operation Research: An Introduction By Dr: Alaa Sagheer Artificial Starting Solution (8): Observation regarding the Use of M-method: The use of penalty M may not force the artificial variable to zero level in the final simplex iteration. Then the final simplex iteration include at least one artificial variable at positive level. This indication that the problem has no feasible condition. 2.( M )should be large enough to act as penalty, but it should not be too large to impair the accuracy of the simplex computations. Operation Research: An Introduction By Dr: Alaa Sagheer

Operation Research: An Introduction By Dr: Alaa Sagheer Artificial Starting Solution (9): Example: Maximize Subject to: Using Computer solution, apply the simplex method M=10, and repeat it using M=999.999. the first M yields the correct solution x1 =1 and x2 =1.5, whereas the second gives the incorrect solution x1 =4 and x2 =0 Multiplying the objective function by 1000 to get z= 200x1 + 500x2 and solve the problem using M=10 and M=999.999 and observe the second value is the one that yields the correct solution in this case The conclusion from two experiments is that the correct choice of the value of M is data dependent. Operation Research: An Introduction By Dr: Alaa Sagheer

Operation Research: An Introduction By Dr: Alaa Sagheer Artificial Starting Solution (10): Two-phase method When a basic feasible solution is not readily available, the two-phase simplex method may be used as an alternative to the big M method. In the two-phase simplex method, we add artificial variables to the same constraints as we did in big M method. Then we find a basic feasible solution to the original LP by solving the Phase I LP. In the Phase I LP, the objective function is to minimize the sum of all artificial variables. At the completion of Phase I, we use Phase II and reintroduce the original LP’s objective function and determine the optimal solution to the original LP. Operation Research: An Introduction By Dr: Alaa Sagheer

Operation Research: An Introduction By Dr: Alaa Sagheer Artificial Starting Solution (11): Note: In Phase I, If the optimal value of sum of the artificial variables are greater than zero, the original LP has no feasible solution which ends the solution process. Other wise, We move to Phase II Example Minimized Subject to: Operation Research: An Introduction By Dr: Alaa Sagheer

Operation Research: An Introduction By Dr: Alaa Sagheer Artificial Starting Solution (12): Solution: Phase I: Minimize: Subject to: Operation Research: An Introduction By Dr: Alaa Sagheer

Operation Research: An Introduction By Dr: Alaa Sagheer Artificial Starting Solution (13): Solution x4 R2 R1 x3 x2 x1 Basic -1 r 3 1 6 4 2 New r-row = Old r-row + 1* R1-row + R2 -row Solution x4 R2 R1 x3 x2 x1 Basic 9 -1 4 7 r 3 1 6 2 Operation Research: An Introduction By Dr: Alaa Sagheer

Operation Research: An Introduction By Dr: Alaa Sagheer Artificial Starting Solution (14): By using new r-row, we solve Phase I of the problem which yields the following optimum tableau Solution x4 R2 R1 x3 x2 x1 Basic -1 r 3/5 -1/5 1/5 1 6/5 -4/5 -3/5 Because minimum r=0, Phase I produces the basic feasible solution: Operation Research: An Introduction By Dr: Alaa Sagheer

Operation Research: An Introduction By Dr: Alaa Sagheer Artificial Starting Solution (15): Phase II After eliminating artificial variables column, the original problem can be written as: Minimize: Subject to: Operation Research: An Introduction By Dr: Alaa Sagheer

Artificial Starting Solution (16): x4 x3 x2 x1 Basic -1 -4 z 3/5 1/5 1 6/5 -3/5 Again, because basic variables x1 and x2 have nonzero coefficient in he z row, they must be substituted out, using the following computation: New z-row = Old z-row + 4* x1-row + 1*x2 -row Operation Research: An Introduction By Dr: Alaa Sagheer

Operation Research: An Introduction By Dr: Alaa Sagheer Artificial Starting Solution (17): The initial tableau of Phase II is as the following: Solution x4 x3 x2 x1 Basic 18/5 1/5 z 3/5 1 6/5 -3/5 Operation Research: An Introduction By Dr: Alaa Sagheer

Operation Research: An Introduction By Dr: Alaa Sagheer Artificial Starting Solution (18): Remarks: The removal of artificial variables and their column at the end of Phase I can take place only when they are all nonbasic. If one or more artificial variables are basic ( at zero level) at the end of Phase I, then the following additional steps must be under taken to remove them prior to start Phase II Step 1. Select a zero artificial variable to leave the basic solution and designate its row as pivot row. The entering variable can be any nonbasic (nonartificial) variable with nonzero (positive or negative) coefficient in the pivot row. Perform the associated simplex iteration. Step 2. Remove the column of the (Just-leaving) artificial from the tableau. If all the zero artificial variables have been removed , go to Phase II. Otherwise, go back to Step I. Operation Research: An Introduction By Dr: Alaa Sagheer