A 250 MHz Level 1 Trigger and Distribution System for the GlueX Experiment David Abbott, C. Cuevas, E. Jastrzembski, F. Barbosa, B. Raydo, H. Dong, J.

Slides:



Advertisements
Similar presentations
Introduction. November 2002 Good News House Senate.
Advertisements

Trigger & DAQ Ole Hansen SBS Collaboration Meeting 19 March 2010.
Hall D Level 1 Trigger Dave Doughty 8/5/03 Hall D Collaboration Meeting.
GlueX Collaboration Meeting June 3-5, GeV Trigger Electronics R. Chris Cuevas 1.Hardware Status  Production Updates 2.DAq and Trigger Testing 
Level-1 Trigger Commissioning H.Dong, A.Somov Jefferson Lab Trigger Workshop, Jul 8, 2010.
GlueX Collaboration Meeting October 2-4, 2014 Trigger System Update R. Chris Cuevas Trigger Hardware/Firmware Status  Hardware Status  Performance Test.
Integrated Tests of a High Speed VXS Switch Card and 250 MSPS Flash ADC Hai Dong, Chris Cuevas, Doug Curry, Ed Jastrzembski, Fernando Barbosa, Jeff Wilson,
CHL -2 Level 1 Trigger System Fully Pipelined Custom ElectronicsDigitization Drift Chamber Pre-amp The GlueX experiment will utilize fully pipelined front.
GlueX Collaboration Meeting May 12-14, GeV Trigger Electronics R. Chris Cuevas Trigger Hardware/Firmware Status  Global Trigger  Installation.
Alice EMCAL Meeting, July 2nd EMCAL global trigger status: STU design progress Olivier BOURRION LPSC, Grenoble.
12 GeV Trigger Workshop Session II - DAQ System July 8th, 2009 – Christopher Newport Univ. David Abbott.
EIC Workshop 21 May 2008 Experience with high trigger R. Chris Cuevas Jefferson Lab Experimental Nuclear Physics Division Topics Cebaf’s Large.
1.Status update from May 2011  FADC250 and Trigger modules  Two crate testing success 2.Schedule  How about those requirements?  What’s happened since.
23 July, 2003Curtis A. Meyer1 Milestones and Manpower Curtis A. Meyer.
GlueX Collaboration Oct '06 C. Cuevas 1 Topics: Projects and Progress 250Msps Flash ADC Energy Sum Module The Bigger Picture DAQ/Electronics Work Plans.
Experiment HUGS 2011 – Jefferson Laboratory Hussein Al Ghoul Department Of Physics Florida State University ᵠ.
The Track-Finding Processor for the Level-1 Trigger of the CMS Endcap Muon System D.Acosta, A.Madorsky, B.Scurlock, S.M.Wang University of Florida A.Atamanchuk,
 Brief status update of DAQ/Trigger production hardware  Firmware development for HPS application  CLAS12 CTP ‘upgrade’ notes  Summary Status of the.
TID and TS J. William Gu Data Acquisition 1.Trigger distribution scheme 2.TID development 3.TID in test setup 4.TS development.
Trigger Supervisor (TS) J. William Gu Data Acquisition Group 1.TS position in the system 2.First prototype TS 3.TS functions 4.TS test status.
Prototype of the Global Trigger Processor GlueX Collaboration 22 May 2012 Scott Kaneta Fast Electronics Group.
GlueX Collaboration Meeting February , GeV Trigger Electronics R. Chris Cuevas Hardware Status ( A top down view,, )  Global Trigger Processing.
Hall A DAQ status and upgrade plans Alexandre Camsonne Hall A Jefferson Laboratory Hall A collaboration meeting June 10 th 2011.
The GlueX Detector 5/29/091CIPANP The GlueX Detector -- David Lawrence (JLab) David Lawrence (JLab) Electron beam accelerator continuous-wave (1497MHz,
GlueX Collaboration Meeting February , GeV Trigger Electronics R. Chris Cuevas 1.Hardware Design Status Updates  Production News  Status.
U N C L A S S I F I E D FVTX Detector Readout Concept S. Butsyk For LANL P-25 group.
GlueX Collaboration Meeting 12GeV Trigger Electronics October 4 - 6, 2012 R. Chris Cuevas 1.Hardware Design Status Updates  Production News  Acceptance.
DAQ Issues for the 12 GeV Upgrade CODA 3. A Modest Proposal…  Replace aging technologies  Run Control  Tcl-Based DAQ components  mSQL  Hall D Requirements.
Data Acquisition for the 12 GeV Upgrade CODA 3. The good news…  There is a group dedicated to development and support of data acquisition at Jefferson.
Solid SIDIS DAQ Solid collaboration meeting June 2 nd /3 rd 2011 Alexandre Camsonne.
Hall D Level 1 Trigger Dave Doughty 1/10/2008 Hall D Collaboration Meeting.
David Abbott - JLAB DAQ group Embedded-Linux Readout Controllers (Hardware Evaluation)
1 Trigger and DAQ for SoLID SIDIS Programs Yi Qiang Jefferson Lab for SoLID-SIDIS Collaboration Meeting 3/25/2011.
Hall D Online Meeting 28 March 2008 Fast Electronics R. Chris Cuevas Group Leader Jefferson Lab Experimental Nuclear Physics Division System Engineering.
Hall D Online Meeting 27 June 2008 Fast Electronics R. Chris Cuevas Jefferson Lab Experimental Nuclear Physics Division 12 GeV Trigger System Status Update.
Trigger Interface and Distribution J. William Gu Jefferson Lab 1. What is TID 2. TID Structure and functions 3. Possible usage in the system 4. TID related.
David Abbott - Jefferson Lab DAQ group Data Acquisition Development at JLAB.
Hall D Trigger Dave Doughty 9/10/04 Hall D Collaboration Meeting.
GlueX electronics Collaboration Meeting December, 2003 Paul Smith.
PROGRESS ON ENERGY SUM ELECTRONIC BOARD. VXS Backplane Energy Sum 18 fADC VME64 High Speed Serial VME64 16 CH Detector Signals Crate Sum to Trigger Energy.
GlueX Collaboration Meeting 12GeV Trigger Electronics 10 May 2010 R. Chris Cuevas 1.FY10 Project Goals  Update from January 2010 Collaboration Meeting.
12GeV Trigger Workshop Christopher Newport University 8 July 2009 R. Chris Cuevas Welcome! Workshop goals: 1.Review  Trigger requirements  Present hardware.
1 07/10/07 Forward Vertex Detector Technical Design – Electronics DAQ Readout electronics split into two parts – Near the detector (ROC) – Compresses and.
Hall D Online Meeting 9 August 2007 Fast Electronics R. Chris Cuevas Group Leader Jefferson Lab Experimental Nuclear Physics Division Mission Who’s Who.
Jefferson Laboratory Hall A SuperBigBite Spectrometer Data Acquisition System Alexandre Camsonne APS DNP 2013 October 24 th 2013 Hall A Jefferson Laboratory.
Ba A B B1 FADC B2 SD_FP FLEX_I/O ROC VME64x A: [ HELICITY, HELICITY_FLIP ] (NIM or ECL) Port 1 Port 2 a: [ HELICITY, HELICITY_FLIP ] (LVDS) B: [ HELICITY_TRIGGER,
HPS TDAQ Review Sergey Boyarinov, Ben Raydo JLAB June 18, 2014.
GTP Update 3 March Cuevas. CPUPP17PP15PP13PP11PP09PP07PP05PP03PP01SWASWBPP02PP04PP06PP08PP10PP12PP14PP16PP18 64x***SSP GTPA GTPB SSP TI DP1LVPECL.
Level-1 Trigger Commissioning Status A.Somov Jefferson Lab Collaboration Meeting, May 10, 2010.
Hall–D Level-1 Trigger Commissioning Part II A.Somov, H.Dong Jefferson Lab 12 GeV Trigger Workshop, July 8, 2010  Play Back Test Vector in Hall-D commissioning.
Electronics Workshop GlueX Collaboration Meeting 28 March 2007 Fast Electronics R. Chris Cuevas Group Leader Jefferson Lab Physics Division Topics: Review.
DAQ Selection Discussion DAQ Subgroup Phone Conference Christopher Crawford
Modifications to Support Multiple Crates with the TI Ed Jastrzembski – 9/16/09.
Super BigBite DAQ & Trigger Jens-Ole Hansen Hall A Collaboration Meeting 16 December 2009.
A 250 MHz Level 1 Trigger and Distribution System for the GlueX Experiment David Abbott, C. Cuevas, E. Jastrzembski, F. Barbosa, B. Raydo, H. Dong, J.
The LHCb Calorimeter Triggers LAL Orsay and INFN Bologna.
DAQ and Trigger for HPS run Sergey Boyarinov JLAB July 11, Requirements and available test results 2. DAQ status 3. Trigger system status and upgrades.
Fast Electronics Group Experimental Nuclear Physics Division
ATLAS calorimeter and topological trigger upgrades for Phase 1
B. Raydo, C. Cuevas, D. Abbott, B. Moffit, J. Wilson, S. Boiarinov
Counting Mode DAQ for Compton
CLAS12 DAQ, Trigger and Online Computing Requirements
JLAB Front-end and Trigger Electronics
New Pipeline DAQ and 12GeV Trigger Systems
Example of DAQ Trigger issues for the SoLID experiment
The 12 GeV Jlab Upgrade Project
M. Krivda for the ALICE trigger project, University of Birmingham, UK
SoLID DAQ for Transversity and PVDIS
LHCb Trigger, Online and related Electronics
SoLID DAQ for Transversity and PVDIS
Presentation transcript:

A 250 MHz Level 1 Trigger and Distribution System for the GlueX Experiment David Abbott, C. Cuevas, E. Jastrzembski, F. Barbosa, B. Raydo, H. Dong, J. Wilson, B. Gunning, A. Gupta, M. Taylor, S. Somov – Jefferson Lab D. Doughty – Christopher Newport University IEEE-NPSS Real-time Conference May 10 th -15 th 2009 Beijing, China IEEE-NPSS Real-Time Conference IHEP - Beijing, China

Introduction Jefferson Lab (in Newport News Virginia) has begun construction on an upgrade to the existing electron accelerator.  Double the energy – 6 GeV -> 12 GeV  Fourth experimental area (Hall D)  Completion by 2015 The new experimental Hall will house the GlueX detector New experimental program will require upgrades to existing DAQ and trigger systems. All experimental halls share a common DAQ system (CODA). New designs are being introduced into the existing 6 GeV program. IEEE-NPSS Real-Time Conference IHEP - Beijing, China

GlueX Experiment Top View 75 m Tagger Area Electron beam dump Coherent Bremsstrahlung photon beam Collimator Photon Beam dump GlueX detector Radiator e-e- IEEE-NPSS Real-Time Conference IHEP - Beijing, China  Bremsstrahlung photons produced by 12 GeV electron beam incident on a diamond crystal. Main coherent Bremsstrahlung peak at E  8.4 – 9.0 GeV  Two classes of interactions in the detector: - Hadronic photoproduction (on 30 cm long liquid hydrogen target) - Electromagnetic interactions Physics goal: Search for exotic mesons in interactions of polarized photons with a hydrogen target Exp. Hall

GlueX Trigger Total Photon flux : 3 x10^9 (10^8 in coherent peak) Total Hadronic Rate: 360 kHz Total Elecromagnetic background: ~200 MHz (Compton + pair production in target/detector) Coherent peak 8.4 < E  < 9.0 Trigger: Level 1 (Hardware) + Level 3 (Software) L1 Goal: < 200 kHz (with high efficiency for coherent photoproduction) L1 L3 Total Channels: ~22k L1 Data rate: ~3 GB/sec L3 Farm: 20 kHz, 300 MB/s to Disk Detector subsystems: Tagger (L1) Pair spectrometer Start Counter (L1) Central Drift Chamber Forward Drift Chambers Time of Flight (L1) Barrel Calorimeter (L1) Forward Calorimeter (L1) IEEE-NPSS Real-Time Conference IHEP - Beijing, China

Level 1 Design IEEE-NPSS Real-Time Conference IHEP - Beijing, China Up to 5 detector subsystems can be used FCAL/BCAL – Energy Start Counter – Hits Forward TOF – Hits Tagger – Hits (not at high luminosity) Continuous computation 250 MHz) 4 level hierarchy Board -> Crate -> Subsystem -> Global VME for the Data Path (2eSST : >200 MB/s) VXS for the Trigger Path 18 payload slots 2 switch slots (redundant star) 8 serial lanes (4 each in/out) per VME slot Board level trigger starts with custom JLAB design flash ADC (250 MHz)… VXS (VITA 41 standard) VME64x + high speed serial fabric on J0

JLAB 250 MHz Flash ADC IEEE-NPSS Real-Time Conference IHEP - Beijing, China T T FADC VME Data & Control (Altera Stratix II) Trigger Sums & Hits FADC Trigger FPGA (Xilinx FX20) VXS (P0) 16 Inputs (10 or MHz x8 Input FPGA (Xilinx LX25) Rocket I/O Aurora protocol x2 lanes bonded 2.5 Gbps/lane 8/10 bit encoding Data: 500 MB/s  Pipeline trigger/data (8 microsec lookback)  User downloadable (via VME) code for Input/Trigger FPGAs 2eSST Data: 200 MB/s

Crate Level Processing IEEE-NPSS Real-Time Conference IHEP - Beijing, China VXS Crate FADC CPUCPU TITI CTPCTP SDSD Crate Trigger Processor (CTP) Switch slot A Accept 16 FADC streams via VXS Crate Sum & Hit processing x4 lane (1 GB/s total) fiber out to sub-system level Trigger Interface (TI) Payload slot 18 Accepts Global Trigger/Clock/Sync Info Fixed Latency link ( MHz) Sends trig data to SD for crate distribution Accepts CTP info for VME readout Signal Distribution Card (SD) Switch slot B Distribute (via VXS) Clocks/Trigger/Sync to all boards in the crate. CTP Prototype Virtex5 LX50 Virtex5 LX110 HFBR-7934 fiber trans.

Sub-System Processor (SSP) IEEE-NPSS Real-Time Conference IHEP - Beijing, China All SSPs reside in a single VXS crate (Global Trigger Crate) Each SSP receives up to 8 four-lane CTP links Multiple SSPs will be needed for some Detector systems Each SSP clock time-stamped reports to Global Trigger Processor (via x4 lane VXS) Prototype designs are in progress GlueX L1 Systems: BCAL: 2 SSPs FCAL: 2 SSPs SC : 1 SSP TOF : 1 SSP TAG : 1 SSP

Global Trigger Processor (GTP) IEEE-NPSS Real-Time Conference IHEP - Beijing, China Switch Slot – up to 2 GTPs in the Crate Up to 32 independent trigger decisions every 4 ns Data sent to Trigger Distribution Crate…

Global Trigger Processing cont… IEEE-NPSS Real-Time Conference IHEP - Beijing, China SSP CPUCPU TITI GTPGTP GTPGTP Z >= TFM*HTOF + EFM*EFCal + RM*((EFCal +1)/(EBCal + 1)) HTOF - Hits Forward TOF EFCal - Energy Forward Calorimeter EBCal - Energy Barrel Calorimeter All computing done in pipelined, 32bit floating point arithmetic SSP data was converted from integers to floating point Equation is computed every 4ns and trigger bit is updated if Z is above a programmable threshold Each coefficient is “variable” – can be changed very quickly without having to reprogram FPGA Used Xilinx specific math libraries (+, -, *, /, sqrt) Synthesis and implementation resulted in using only 3% of LX220 FPGA Latency was 69 clock cycles => 276ns delay introduced for forming L1 trigger To estimate the latency involved in calculation of an L1 trigger by the GTP an example equation was implemented in VHDL using Xilinx synthesis tools and a Virtex 5 LX220 FPGA: BCALFCALTOF to TS

Trigger Distribution IEEE-NPSS Real-Time Conference IHEP - Beijing, China TD CPUCPU SDSD TSTS Trigger Supervisor (TS) Accept trigger decision from GTP (ribbon/copper) Async User triggers – pulsers/calibration Source for global 250 MHz Clock Serialize trigger 62.5 MHz (every 16 ns) “Master” TI board – payload slot 18 Trigger Distribution Cards (TD) up to 16 total (in payload slots 2-17) Fan-out clock/trigger/sync to 1-8 crates (to TI) Uses same fiber connections as CTP->SSP links Ensure fixed-latency link for trigger to all front-end crates Synchronizes 250 MHz clock on all crates Return data link provides crate status – error or busy condition that would require triggers to be disabled.

L1 Trigger & Distribution SSP CPUCPU TITI GTPGTP GTPGTP TD CPUCPU SDSD IEEE-NPSS Real-Time Conference IHEP - Beijing, China Global Trigger Crate Trigger Distribution Crate MHz (x4 2Gb/s Link) MHz (x1 1Gb/s Link) MHz TSTS Front-End Crates: (~50 VXS, 12 VME) VXS Links: x2 2Gb/s Distribute Trigger: up to 128 crates

t 1 : FADC250 (ADC->P0)180ns (20cycles+100ns MGT)t 11 : SD (Px->Px)10ns t 2 : FADC250->CTP (P0->Px)10nst 12 : SD->TD (Px->P0)10ns t 3 : CTP (Px->FiberTx)180ns (20cycles+100ns GTP)t 13 : TD (P0->FiberTx)10ns t 4 : CTP FiberTx->SSP FiberRx600ns (~100m fiber run)t 14 : TD->TI (FiberTx->Fiber Rx) 600ns (~100m fiber run) t 5 : SSP (FiberRx->P0)600ns (100cycles+200ns GTP)t 15 : TI (FiberRx->P0)80ns (20cycles) t 6 : SSP->GTP (P0->Px)10nst 16 : TI->SD (P0->Px)10ns t 7 : GTP (Px->TrigBit) 495ns (95cycles+100ns GTP)t 17 : SD (Px->Px)40ns t 8 : GTP->TS (TrigBit->TrigBitIn)10nst 18 : SD->FADC250 (Px->P0)10ns t 9 : TS (TriggerBitIn->P0)115ns (20cycles+35ns SerDes) t 10 : TS->SD (P0->Px)10ns Total:2980ns Level 1 Trigger Timing IEEE-NPSS Real-Time Conference IHEP - Beijing, China FADC250CTPSSPGTP TS SDTDTISD t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 11 t 12 t 13 t 14 t 15 t 16 t 17 t 18 Link: 125MHz BCal, FCal Mode: 15:0 ADCSum t 0 31:16 ADCSum t 1 TOF, ST, Tagger Mode: 15:0 Hit Bits t 0 31:16 Hit Bits t 1 Link: 250MHz 31:0 Triggers(31:0) Link: 62.5MHz 15:0 TriggerWord Link: 250MHz 0 Trigger 1 1 Trigger 2 2 Sync Link: 125MHz BCal, FCal Mode: 19:0 ADCSum t 0 39:20 ADCSum t 1 TOF, ST Mode: 8:0 TrackCount t 0 17:9 TrackCount t 1 39:18 Unused Tagger Mode: 7:0 MinHit t 0 15:8 MaxHit t 0 23:16 MinHit t 1 31:24 MaxHit t 1 39:32 Unused All Modes: 47:40 Timestamp 63:48 ECC Link: 125MHz BCal, FCal Mode: 22:0 ADCSum t 0 55:23 ADCSum t 1 63:56 Unused TOF, ST Mode: 11:0 TrackCount t 0 23:12 TrackCount t 1 63:24 Unused Tagger Mode: 7:0 MinHit t 0 15:8 MaxHit t 0 23:16 MinHit t 1 31:24 MaxHit t 1 63:32 Unused Front-end Crate Trigger Distribution Crate Global Trigger Crate

300 MB/sec KHz GlueX DAQ Overview IEEE-NPSS Real-Time Conference IHEP - Beijing, China 3 GB/sec

Prototypes & Testing IEEE-NPSS Real-Time Conference IHEP - Beijing, China SD TI CTPFADC TS FADC Two crate system Crate-level summing (4 Flash ADCs) 250 MHz clock distribution Trigger distribution/ synchronization (up to 150 meters) Please visit Poster TDAP-16 for more information

Summary The 12 GeV upgrade and a new experiment (GlueX) at Jefferson Lab requires significant performance improvements for both trigger and data acquisition. We must transition with support for legacy systems in the other experimental halls - VXS. Implement deadtimeless pipelined front-end digitizers with synchronous 250 MHz Level 1 trigger and distribution system. L1 requirements (200 kHz, < 4 µs) latency can be met. Customized L1 systems can be built from for all experiments using Board -> Crate -> Sub-system -> Global hierarchy Prototyping and testing have been successful without pushing the bandwidth limits of the technology. There is much room for expansion. IEEE-NPSS Real-Time Conference IHEP - Beijing, China