Modern information retrieval Modelling. Introduction IR systems usually adopt index terms to process queries IR systems usually adopt index terms to process.

Slides:



Advertisements
Similar presentations
INFO624 - Week 2 Models of Information Retrieval Dr. Xia Lin Associate Professor College of Information Science and Technology Drexel University.
Advertisements

Multimedia Database Systems
Basic IR: Modeling Basic IR Task: Slightly more complex:
INSTRUCTOR: DR.NICK EVANGELOPOULOS PRESENTED BY: QIUXIA WU CHAPTER 2 Information retrieval DSCI 5240.
Modern Information Retrieval Chapter 1: Introduction
The Probabilistic Model. Probabilistic Model n Objective: to capture the IR problem using a probabilistic framework; n Given a user query, there is an.
Modern Information Retrieval by R. Baeza-Yates and B. Ribeiro-Neto
Web Search - Summer Term 2006 II. Information Retrieval (Basics Cont.)
Web- and Multimedia-based Information Systems. Assessment Presentation Programming Assignment.
Motivation and Outline
IR Models: Overview, Boolean, and Vector
T.Sharon - A.Frank 1 Internet Resources Discovery (IRD) Classic Information Retrieval (IR)
ISP 433/533 Week 2 IR Models.
IR Models: Structural Models
Models for Information Retrieval Mainly used in science and research, (probably?) less often in real systems But: Research results have significance for.
Information Retrieval Modeling CS 652 Information Extraction and Integration.
T.Sharon - A.Frank 1 Internet Resources Discovery (IRD) IR Queries.
Modern Information Retrieval Chapter 2 Modeling. Can keywords be used to represent a document or a query? keywords as query and matching as query processing.
Chapter 2Modeling 資工 4B 陳建勳. Introduction.  Traditional information retrieval systems usually adopt index terms to index and retrieve documents.
Modeling Modern Information Retrieval
IR Models: Latent Semantic Analysis. IR Model Taxonomy Non-Overlapping Lists Proximal Nodes Structured Models U s e r T a s k Set Theoretic Fuzzy Extended.
Vector Space Model CS 652 Information Extraction and Integration.
Modern Information Retrieval Chapter 2 Modeling. Can keywords be used to represent a document or a query? keywords as query and matching as query processing.
IR Models: Review Vector Model and Probabilistic.
Other IR Models Non-Overlapping Lists Proximal Nodes Structured Models Retrieval: Adhoc Filtering Browsing U s e r T a s k Classic Models boolean vector.
Recuperação de Informação. IR: representation, storage, organization of, and access to information items Emphasis is on the retrieval of information (not.
Information Retrieval: Foundation to Web Search Zachary G. Ives University of Pennsylvania CIS 455 / 555 – Internet and Web Systems August 13, 2015 Some.
Modeling (Chap. 2) Modern Information Retrieval Spring 2000.
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 32-33: Information Retrieval: Basic concepts and Model.
Information Retrieval Introduction/Overview Material for these slides obtained from: Modern Information Retrieval by Ricardo Baeza-Yates and Berthier Ribeiro-Neto.
PrasadL2IRModels1 Models for IR Adapted from Lectures by Berthier Ribeiro-Neto (Brazil), Prabhakar Raghavan (Yahoo and Stanford) and Christopher Manning.
Information Retrieval Chapter 2: Modeling 2.1, 2.2, 2.3, 2.4, 2.5.1, 2.5.2, Slides provided by the author, modified by L N Cassel September 2003.
Information Retrieval Models - 1 Boolean. Introduction IR systems usually adopt index terms to process queries Index terms:  A keyword or group of selected.
1 Information Retrieval Acknowledgements: Dr Mounia Lalmas (QMW) Dr Joemon Jose (Glasgow)
Introduction to Digital Libraries Searching
IR Models J. H. Wang Mar. 11, The Retrieval Process User Interface Text Operations Query Operations Indexing Searching Ranking Index Text quer y.
Introduction to Digital Libraries hussein suleman uct cs honours 2003.
Information Retrieval Model Aj. Khuanlux MitsophonsiriCS.426 INFORMATION RETRIEVAL.
CSCE 5300 Information Retrieval and Web Search Introduction to IR models and methods Instructor: Rada Mihalcea Class web page:
Information Retrieval CSE 8337 Spring 2005 Modeling Material for these slides obtained from: Modern Information Retrieval by Ricardo Baeza-Yates and Berthier.
1 University of Palestine Topics In CIS ITBS 3202 Ms. Eman Alajrami 2 nd Semester
1 Patrick Lambrix Department of Computer and Information Science Linköpings universitet Information Retrieval.
1 Information Retrieval LECTURE 1 : Introduction.
Information Retrieval
The Boolean Model Simple model based on set theory
Information Retrieval and Web Search IR models: Boolean model Instructor: Rada Mihalcea Class web page:
Recuperação de Informação B Cap. 02: Modeling (Set Theoretic Models) 2.6 September 08, 1999.
C.Watterscsci64031 Classical IR Models. C.Watterscsci64032 Goal Hit set of relevant documents Ranked set Best match Answer.
Set Theoretic Models 1. IR Models Non-Overlapping Lists Proximal Nodes Structured Models Retrieval: Adhoc Filtering Browsing U s e r T a s k Classic Models.
Information Retrieval and Web Search Introduction to IR models and methods Rada Mihalcea (Some of the slides in this slide set come from IR courses taught.
Information Retrieval CSE 8337 Spring 2005 Modeling (Part II) Material for these slides obtained from: Modern Information Retrieval by Ricardo Baeza-Yates.
Introduction n IR systems usually adopt index terms to process queries n Index term: u a keyword or group of selected words u any word (more general) n.
1 Boolean Model. 2 A document is represented as a set of keywords. Queries are Boolean expressions of keywords, connected by AND, OR, and NOT, including.
Information Retrieval Models School of Informatics Dept. of Library and Information Studies Dr. Miguel E. Ruiz.
Lecture 1: Introduction and the Boolean Model Information Retrieval
Latent Semantic Indexing
INFORMATION RETRIEVAL TECHNIQUES BY DR. ADNAN ABID
Information Retrieval
INFORMATION RETRIEVAL TECHNIQUES BY DR. ADNAN ABID
Boolean and Vector Space Retrieval Models
Models for Retrieval and Browsing - Fuzzy Set, Extended Boolean, Generalized Vector Space Models Berlin Chen 2003 Reference: 1. Modern Information Retrieval,
Recuperação de Informação B
Recuperação de Informação B
Recuperação de Informação B
Recuperação de Informação B
Berlin Chen Department of Computer Science & Information Engineering
Information Retrieval and Web Design
Modeling in Information Retrieval - Classical Models
Advanced information retrieval
Berlin Chen Department of Computer Science & Information Engineering
Presentation transcript:

Modern information retrieval Modelling

Introduction IR systems usually adopt index terms to process queries IR systems usually adopt index terms to process queries Index term: Index term: –a keyword or group of selected words –any word (more general) Stemming might be used: Stemming might be used: –connect: connecting, connection, connections An inverted file is built for the chosen index terms An inverted file is built for the chosen index terms

Introduction Indexing results in records like Indexing results in records like Doc12: napoleon, france, revolution, emperor or (weighted terms) or (weighted terms) Doc12: napoleon-8, france-6, revolution-4, emperor-7 To find all documents about Napoleon would involve looking at every document’s index record (possibly 1,000s or millions). To find all documents about Napoleon would involve looking at every document’s index record (possibly 1,000s or millions). (Assume that Doc12 references another file which contains other details about the document.) (Assume that Doc12 references another file which contains other details about the document.)

Introduction Instead the information is inverted : Instead the information is inverted : napoleon : doc12, doc56, doc87, doc99 or (weighted) or (weighted) napoloen : doc12-8, doc56-3, doc87-5, doc99-2 inverted file contains one record per index term inverted file contains one record per index term inverted file is organised so that a given index term can be found quickly. inverted file is organised so that a given index term can be found quickly.

Introduction To find documents satisfying the query To find documents satisfying the query napoleon and revolution –use the inverted file to find the set of documents indexed by napoleon -> doc12, doc56, doc87, doc99 –similarly find the set of documents indexed by revolution -> doc12, doc20, doc45, doc99 –intersect these sets -> doc12, doc99 –go to the document file to retrieve title, authors, location for these documents.

Introduction Docs Information Need Index Terms doc query Ranking match

Introduction Matching at index term level is quite imprecise No surprise that users get frequently unsatisfied Since most users have no training in query formation, problem is even worst Frequent dissatisfaction of Web users Issue of deciding relevance is critical for IR systems: ranking

Introduction A ranking is an ordering of the documents retrieved that (hopefully) reflects the relevance of the documents to the user query A ranking is based on fundamental premisses regarding the notion of relevance, such as:  common sets of index terms  sharing of weighted terms  likelihood of relevance Each set of premisses leads to a distinct IR model

IR Models Non-Overlapping Lists Proximal Nodes Structured Models Retrieval: Adhoc Filtering Browsing U s e r T a s k Classic Models boolean vector probabilistic Set Theoretic Fuzzy Extended Boolean Probabilistic Inference Network Belief Network Algebraic Generalized Vector Lat. Semantic Index Neural Networks Browsing Flat Structure Guided Hypertext

IR Models The IR model, the logical view of the docs, and the retrieval task are distinct aspects of the system

Retrieval: Ad Hoc x Filtering Ad hoc retrieval: Collection “Fixed Size” Q2Q3 Q1Q4 Q5

Retrieval: Ad Hoc x Filtering Filtering: Documents Stream User 1 Profile User 2 Profile Docs Filtered for User 2 Docs for User 1

Classic IR Models - Basic Concepts Each document represented by a set of representative keywords or index terms An index term is a document word useful for remembering the document main themes Usually, index terms are nouns because nouns have meaning by themselves However, search engines assume that all words are index terms (full text representation)

Classic IR Models - Basic Concepts Not all terms are equally useful for representing the document contents: less frequent terms allow identifying a narrower set of documents The importance of the index terms is represented by weights associated to them Let  ki be an index term  dj be a document  wij is a weight associated with (ki,dj) The weight wij quantifies the importance of the index term for describing the document contents

Classic IR Models - Basic Concepts  Ki is an index term  dj is a document  t is the number of index terms  K = (k1, k2, …, kt) is the set of all index terms  wij >= 0 is a weight associated with (ki,dj)  wij = 0 indicates that term does not belong to doc  vec(dj) = (w1j, w2j, …, wtj) is a weighted vector associated with the document dj  gi(vec(dj)) = wij is a function which returns the weight associated with pair (ki,dj)

The Boolean Model Simple model based on set theory Queries specified as boolean expressions  precise semantics  neat formalism  q = ka  (kb   kc) Terms are either present or absent. Thus, wij  {0,1} Consider  q = ka  (kb   kc)  vec(qdnf) = (1,1,1)  (1,1,0)  (1,0,0)  vec(qcc) = (1,1,0) is a conjunctive component

The Boolean Model q = ka  (kb   kc) sim(q,dj) = 1 if  vec(qcc) | (vec(qcc)  vec(qdnf))  (  ki, gi(vec(dj)) = gi(vec(qcc))) 0 otherwise (1,1,1) (1,0,0) (1,1,0) KaKb Kc

The Boolean Model Example:  Terms: K 1, …,K 8.  Documents: 1. D 1 = {K 1, K 2, K 3, K 4, K 5 } 2. D 2 = {K 1, K 2, K 3, K 4 } 3. D 3 = {K 2, K 4, K 6, K 8 } 4. D 4 = {K 1, K 3, K 5, K 7 } 5. D 5 = {K 4, K 5, K 6, K 7, K 8 } 6. D 6 = {K 1, K 2, K 3, K 4 }  Query: K 1  (K 2   K 3 )  Answer: {D 1, D 2, D 4, D 6 }  ({D 1, D 2, D 3, D 6 }  {D 3, D 5 }) = {D 1, D 2, D 6 }

Drawbacks of the Boolean Model Retrieval based on binary decision criteria with no notion of partial matching No ranking of the documents is provided (absence of a grading scale) Information need has to be translated into a Boolean expression which most users find awkward The Boolean queries formulated by the users are most often too simplistic As a consequence, the Boolean model frequently returns either too few or too many documents in response to a user query

The Vector Model Use of binary weights is too limiting Non-binary weights provide consideration for partial matches These term weights are used to compute a degree of similarity between a query and each document Ranked set of documents provides for better matching

The Vector Model Define:  wij > 0 whenever ki  dj  wiq >= 0 associated with the pair (ki,q)  vec(dj) = (w1j, w2j,..., wtj) and vec(q) = (w1q, w2q,..., wtq)  To each term ki is associated a unitary vector vec(i)  The unitary vectors vec(i) and vec(j) are assumed to be orthonormal (i.e., index terms are assumed to occur independently within the documents) The t unitary vectors vec(i) form an orthonormal basis for a t-dimensional space In this space, queries and documents are represented as weighted vectors

The Vector Model Sim(q,dj) = cos(  ) = [vec(dj)  vec(q)] / |dj| * |q| = [  wij * wiq] / |dj| * |q| Since wij > 0 and wiq > 0, 0 <= sim(q,dj) <=1 A document is retrieved even if it matches the query terms only partially i j dj q 

The Vector Model Sim(q,dj) = [  wij * wiq] / |dj| * |q| How to compute the weights wij and wiq ? A good weight must take into account two effects:  quantification of intra-document contents (similarity)  tf factor, the term frequency within a document  quantification of inter-documents separation (dissi- milarity)  idf factor, the inverse document frequency  wij = tf(i,j) * idf(i)

The Vector Model Let,  N be the total number of docs in the collection  ni be the number of docs which contain ki  freq(i,j) raw frequency of ki within dj A normalized tf factor is given by  f(i,j) = freq(i,j) / max(freq(l,j))  where the maximum is computed over all terms which occur within the document dj The idf factor is computed as  idf(i) = log (N/ni)  the log is used to make the values of tf and idf comparable. It can also be interpreted as the amount of information associated with the term ki.

The Vector Model The best term-weighting schemes use weights which are give by  wij = f(i,j) * log(N/ni)  the strategy is called a tf-idf weighting scheme For the query term weights, a suggestion is  wiq = (0.5 + [0.5 * freq(i,q) / max(freq(l,q)]) * log(N/ni) The vector model with tf-idf weights is a good ranking strategy with general collections The vector model is usually as good as the known ranking alternatives. It is also simple and fast to compute.

The Vector Model Example: A collection includes 10,000 documents The term A appears 20 times in a particular document The maximum apperance of any term in this document is 50 The term A appears in 2,000 of the collection documents. f(i,j) = freq(i,j) / max(freq(l,j)) = 20/50 = 0.4 idf(i) = log(N/ni) = log (10,000/2,000) = log(5) = 2.32 wij = f(i,j) * log(N/ni) = 0.4 * 2.32 = 0.93

The Vector Model Advantages:  term-weighting improves quality of the answer set  partial matching allows retrieval of docs that approximate the query conditions  cosine ranking formula sorts documents according to degree of similarity to the query Disadvantages:  assumes independence of index terms (??); not clear that this is bad though

The Vector Model: Example I d1 d2 d3 d4d5 d6 d7 k1 k2 k3

The Vector Model: Example II d1 d2 d3 d4d5 d6 d7 k1 k2 k3

The Vector Model: Example III d1 d2 d3 d4d5 d6 d7 k1 k2 k3