Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

Slides:



Advertisements
Similar presentations
Lecture 1: basics of lattice QCD Peter Petreczky Lattice regularization and gauge symmetry : Wilson gauge action, fermion doubling Different fermion formulations.
Advertisements

Electroweak Symmetry Breaking from D-branes Joshua Erlich College of William & Mary Title U Oregon, May 22, 2007 w/ Chris Carone, Marc Sher, Jong Anly.
Electroweak Symmetry Breaking from the D4-D8-D8 System Joshua Erlich College of William & Mary Budapest, June 25, 2007 w/ Chris Carone, Marc Sher, Jong.
Analysis of QCD via Supergravity S. Sugimoto (YITP) based on hep-th/ (T. Ibaraki + S.S.) Windows to new paradigm in particle Sendai.
Martín Schvellinger Instituto de Física de La Plata - CONICET Departamento de Física - UNLP The gauge/gravity duality and Non-Relativistic Quantum Field.
Baryons with Holography Hideo SUGANUMA ( Kyoto Univ. ) Toru KOJO ( Kyoto Univ. ) Kanabu NAWA ( RCNP ) in collaboration with.
Brane-World Inflation
Summing planar diagrams
Gauge/gravity and condensed matter
The fast life of holographic mesons (Rowan Thomson, Andrei Starinets & David Mateos) TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
With Y. Seo, J.P. Shock, D. Zoakos(0911.xxxx) CY.Park, KH. Jo, BH Lee( )
Massive type IIA string theory cannot be strongly coupled Daniel L. Jafferis Institute for Advanced Study 16 November, 2010 Rutgers University Based on.
Topological current effect on hQCD at finite density and magnetic field Pablo A. Morales Work in collaboration with Kenji Fukushima Based on Phys. Rev.
Gauge/Gravity Duality 2 Prof Nick Evans AdS/CFT Correspondence TODAY Quarks Deforming AdS Confinement Chiral Symmetry Breaking LATER Other brane games.
Giant Magnon and Spike Solutions in String Theories Bum-Hoon Lee Center for Quantum SpaceTime(CQUeST)/Physics Dept. Sogang University, Seoul, Korea PAQFT08,
Lattice Spinor Gravity Lattice Spinor Gravity. Quantum gravity Quantum field theory Quantum field theory Functional integral formulation Functional integral.
3rd International Workshop On High Energy Physics In The LHC Era.
Wayne Leonardo Silva de Paula Instituto Tecnológico de Aeronáutica Dynamical AdS/QCD model for light-mesons and baryons. Collaborators: Alfredo.
Gauge/Gravity Duality 2 Prof Nick Evans AdS/CFT Correspondence TODAY Quarks Deforming AdS Confinement Chiral Symmetry Breaking LATER Other brane games.
Spin Chain in Gauge Theory and Holography Yong-Shi Wu Department of Physics, University of Utah, Center for Advanced Study, Tsinghua University, and Shanghai.
Functional renormalization – concepts and prospects.
String/gauge theory duality and QCD M. Kruczenski Purdue University ASU 2009.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Large N c QCD Towards a Holographic Dual of David Mateos Perimeter Institute ECT, Trento, July 2004.
AdS/CFT-QCD-CMT Yi NTHU April 8 th, 2010.
On Holographic (stringy ) Baryons
Planar diagrams in light-cone gauge hep-th/ M. Kruczenski Purdue University Based on:
Fluctuation Partition Function of a Wilson Loop in a Strongly Coupled N=4 SYM Plasma Defu Hou (CCNU), James T.Liu (U. Michigan) and Hai-cang Ren (Rockefeller.
String / gauge theory duality and ferromagnetic spin chains Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov M. Kruczenski Princeton.
BOTTOM-UP HOLOGRAPHIC APPROACH TO QCD OverviewOverview Sergey Afonin Saint Petersburg State University XI Quark Confinement and the Hadron Spectrum, Saint.
Excited QCD 2010, February 3 (Tatra National Park, 2010) Holographic Models for Planar QCD without AdS/CFT Correspondence Sergey Afonin Ruhr-University.
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
Exact Results for perturbative partition functions of theories with SU(2|4) symmetry Shinji Shimasaki (Kyoto University) JHEP1302, 148 (2013) (arXiv: [hep-th])
BOTTOM-UP HOLOGRAPHIC APPROACH TO QCD OverviewOverview Sergei Afonin Saint Petersburg State University Международная конференция «В поисках фундаментальных.
1 Dynamical Holographic QCD Model Mei HUANG Institute of High Energy Physics, CAS Theoretical Physics Center for Science Facilities, CAS Seminar at USTC,
Gauge Theory, Superstrings and Supermagnets Volker Schomerus SYSY Goettingen 2012.
Holographic model for hadrons in deformed AdS 5 background K. Ghoroku (Fukuoka Tech.) N. Maru (U. Rome) M. Yahiro (Kyushu U.) M. Tachibana (Saga U.) Phys.Lett.B633(2006)606.
Multi-quark potential from AdS/QCD based on arXiv: Wen-Yu Wen Lattice QCD.
Domain-wall/QFT correspondence Wen-Yu Wen Academia Sinica Feb 24, 2006 A Bridge Connecting Gravity and Gauge Theory.
5d truncation ignoring the 5-sphere (SO(6) gauge symmetry) There are 42 scalars - a 20 of SO(6) - a 10 and 10 of SO(6) - scalar dilaton-axion, singlets.
LLM geometries in M-theory and probe branes inside them Jun-Bao Wu IHEP, CAS Nov. 24, 2010, KITPC.
Background Independent Matrix Theory We parameterize the gauge fields by M transforms linearly under gauge transformations Gauge-invariant variables are.
Towards a Gravity Dual of Charmonium in the Strongly Coupled Plasma Paul Hohler University of Illinois, Chicago New Frontiers in QCD workshop Yukawa Institute.
Heavy Quarkonium States with the Holographic Potential Defu Hou (CCNU) From Strings to Things, Seattle, May 2008 With Hai-cang Ren, JHEP 0801:029,2008.
II Russian-Spanish Congress “Particle and Nuclear Physics at all scales and Cosmology”, Saint Petersburg, Oct. 4, 2013 RECENT ADVANCES IN THE BOTTOM-UP.
Matthew Schwartz Johns Hopkins University October 11, 2007 The Extraordinary Predictive Power of Holographic QCD Fermilab Based on hep-ph/ , Erlich.
Strings, Gravity and the Large N Limit of Gauge Theories Juan Maldacena Institute for Advanced Study Princeton, New Jersey.
Contents: 1. Introduction/ Model 2. Meson Properties at Finite Temperature 3. Chemical Potential/ Phase Diagram 4. Summary Trento 06/June 20 Holographic.
Hadrons in a Dynamical AdS/QCD model Colaborators: W de Paula (ITA), K Fornazier (ITA), M Beyer (Rostock), H Forkel (Berlin) Tobias Frederico Instituto.
A nonperturbative definition of N=4 Super Yang-Mills by the plane wave matrix model Shinji Shimasaki (Osaka U.) In collaboration with T. Ishii (Osaka U.),
On String Theory Duals of Lifshitz-like Fixed Point Tatsuo Azeyanagi (Kyoto University) Based on work arXiv: (to appear in JHEP) with Wei Li (IPMU)
Dynamical Instability of Holographic QCD at Finite Density Shoichi Kawamoto 23 April 2010 at National Taiwan University Based on arXiv: in collaboration.
An Introduction to Lattice QCD and Monte Carlo Simulations Sinya Aoki Institute of Physics, University of Tsukuba 2005 Taipei Summer Institute on Particles.
Hadrons from a hard wall AdS/QCD model Ulugbek Yakhshiev (Inha University & National University of Uzbekistan) Collaboration Hyun-Chul Kim (Inha University)
B.-H.L, R. Nayak, K. Panigrahi, C. Park On the giant magnon and spike solutions for strings on AdS(3) x S**3. JHEP 0806:065,2008. arXiv: J. Kluson,
Bum-Hoon Lee Sogang University, Seoul, Korea D-branes in Type IIB Plane Wave Background 15th Mini-Workshop on Particle Physics May 14-15, 2006, Seoul National.
Andrej Ficnar Columbia University Hard Probes 2010, Eilat, Israel October 12, 2010 Nonconformal Holography of Heavy Quark Quenching Andrej Ficnar, Jorge.
1 Marginal Deformations and Penrose limits with continuous spectrum Toni Mateos Imperial College London Universitat de Barcelona, December 22, 2005.
Density effect and beyond
STRING THEORY AND M-THEORY: A Modern Introduction
Ziqiang Zhang Huazhong Normal University
dark matter Properties stable non-relativistic non-baryonic
Weak Interacting Holographic QCD
String coupling and interactions in type IIB matrix model arXiv:0812
Quantum properties of supersymmetric gauge theories
Quark Mass in Holographic QCD
Holographic Heavy- Light mesons from non- Abelian DBI
Jun Nishimura (KEK, SOKENDAI) JLQCD Collaboration:
in collaboration with G. Ishiki, S. Shimasaki
Excited QCD 2010, 31 Jan.-6 Feb., 2010 Tatra National Park (Slovakia)
Presentation transcript:

Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K., hep-th/0607xxx D. Vaman, I.K., hep-th/ (Harvard University)

Outline 1. Holographic meson spectroscopy - review on AdS/CFT with flavor (fundamentals) in the probe approximation (neglect backreaction of probe brane) - D3/D7 intersection, meson spectroscopy 2. Spectroscopy of spin-1/2 fluctuations in the D3/D7 system - fermionic action for the D7-brane - Dirac-like equations for spin-1/2 fluctuations 3. Beyond the probe approximation: - construction of the fully localized D3/D7 supergravity solution (including the backreaction of the D7-brane)

The D3/D7 brane intersection Set-up: preserves: 8 supersymmetries SO(4) x SO(2) isometry Field theory: N=4 SU(N c ) super Yang-Mills (3-3 strings) coupled to N f N=2 hypermultiplets (3-7 strings) SU(2) R x U(1) R R-symmetry + SU(2)  global sym. quark mass: separate branes in 89 by a distance L ~ m

More on the N=2 field theory perturbative beta function: running gauge coupling: UV Landau pole: probe approximation: conformal limit N f cons t :; N c ! 1 ) ¯ ¸ N = 2 ! 0

D3/D7 in the probe approximation `t Hooft limit: Karch & Katz (2002)

Spectroscopy of meson operators Spin-0/spin-1 open string fluctuations on the D7-brane are described by the bosonic part of the D7-brane action (DBI): e.o.m.: plane-wave ansatz: eqn. for fluctuation: S b D 7 = ¡ T 7 Z d 8 » q ¡ d e t ( g PB a b + F a b ) x 8 = 0 ; x 9 = L + f ` ( ½ ) e i k ¢ x Y ` ( S 3 2 ½ f ` ( ½ ) + 3 ½ f ` ( ½ ) + µ M 2 ( ½ 2 + L 2 ) 2 ¡ ` ( ` + 2 ) ½ 2 ¶ f ` ( ½ ) = a µ ½ 3 " 3 ½ 2 + L 2 g a b x 8 ; 9 ¶ = 0 Kruczenski et al. (2003)

Meson spectroscopy (part 2) solution: quantization condition: mass spectrum: dual scalar meson operator: f ` ( ½ ) = ½ ` ( ½ 2 + L 2 ) n + ` + 1 F ( ¡ ( n + ` + 1 ) ; ¡ n; ` + 2 ; ¡ ½ 2 = L 2 ) M 2 s = 4 L 2 R 4 ( n + ` + 1 )( n + ` + 2 )( n ; ` > 0 ) M A ` s = ¹ Ã i ¾ A ij X ` Ã j + ¹ q m X A V X ` q m ( i ; m = 1 ; 2 ) ¢ = 3 + ` ¡ n = ` ¡ 1 2 p 1 + M 2 R 4 = L 2 ! ¹ f ( ½ ) » ½ 3 + ` = ½ ¢

U(1) chiral symmetry breaking U(1) A chiral symmetry breaking: - U(1) chiral sym.,, SO(2) isometry in x 8, x 9 - broken by quark condensate: D3 NONSUSY /D7: screening effect: D7-branes repel from spont. U(1) breaking: m ! 0, c  0 singularity X9X9 Babington, Erdmenger, Evans, Guralnik, I.K. (2003) à ! e ¡ i " à ~ à ! e ¡ i " ~ à c = h à ~ à i 6 = 0

Meson spectrum and large N c Goldstone boson (  ') Consider fluctuations  x 8 =f(r) sin(k ¢ x),  x 9 =h(r) sin(k ¢ x) of the plane wave type (M 2 =-k 2 ) around the embedding solution x 8 =0, x 9 = x 9 (r) ) meson spectrum M(m) mexican hat for small m (GMOR) X9X9 X8X8

Spectroscopy of fermionic operators Spin-1/2 open string fluctuations on the D7-brane are described by the fermionic part of the D7-brane action: Martucci et al., hep-th/ where S f D 7 = ¿ D 7 2 Z d 8 » p ¡ g ^ ¹ ª P ¡ ¡ ^ A ( D ^ A i 2 ¢ 5 ! F ^ N ^ P ^ Q ^ R ^ S ¡ ^ N ^ P ^ Q ^ R ^ S ¡ ^ A ) ^ ª

Equation of motion (part 1) Dirac equation on : decomposition: D = ^ ª i 2 ¢ 5 ! ¡ ^ A F ^ N ^ P ^ Q ^ R ^ S ¡ ^ N ^ P ^ Q ^ R ^ S ¡ ^ A ^ ª = 0 A d S 5 £ S 3 ^ ª = " ­ Â |{z} S 5 ­ ª |{z} A d S 5 ; Â = Â jj |{z} S 3 ­ Â ? { ¡ ^ M 5 - f orm: F NPQRS = 1 R " NPQRS ; F npqrs = 1 R " npqrs

Equation of motion (part 2) spinorial harmonics on n-sphere: (for n=3) transform in the result: masses: ( S 3 :n = 3 ) m + ` = ` ; m ¡ ` = ¡ ( ` ) ¡ ( ` ; ` 2 ) an d ( ` 2 ; ` ) o f SO ( 4 )

Dual operators? The dual operators must have the following properties: - spin ½ - mass-dimension relation: - Spin-½ operators: SU ( 2 ) R £ SU ( 2 ) © : ( ` ; ` 2 ) an d ( ` 2 ; ` ) F ` ® » ¹ q X ` ~ Ã y ® + ~ Ã ® X ` q ; G ` ® » ¹ Ã i ¾ B ij ¸ ® C X ` Ã j + ¹ q m X B V ¸ ® C X ` q m ( B ; C = 1 ; 2 ) Ã i = ( Ã ; ~ Ã y )[( 0 ; 0 )] ; q m = ( q ; ¹ ~ q )[( 0 ; 1 2 )] f un d amen t a l s ¸ ® A [( 1 2 ; 0 )] ; X ` = X f i 1 ¢¢¢ X i l g [( ` 2 ; ` 2 )] a d j o i n t ¯ e ld s

Spectrum of spin-½ fluctuations (part 1) Dirac equation on Mück &Viswanathan (1998) second order equation: plane-wave ansatz: e.o.m. for fluctuations: ª ` ( x ; r ) = e i P ¹ x ¹ f ` ( r ) ; M 2 = ¡ P ¹ P ¹ ( z = R 2 = r ) ( z 2 z ¡ d z ¡ m 2 R m R ° z ) ª ( x ¹ ; z ) = 0 A d S 5 :

Spectrum of spin-½ fluctuations (part 2) solution: where spectrum: ¡ n + = j m ` j ¡ 1 2 p 1 + M 2 = L 2 ; ¡ n ¡ = ¡ n ¡ m + ` = ` ; m ¡ ` = ¡ ( ` ) ¢ M 2 G = 4 L 2 R 4 ( n + + ` + 2 )( n + + ` + 3 )( n + > 0 ; ` > 0 ) M 2 F = 4 L 2 R 4 ( n ¡ + ` + 1 )( n ¡ + ` + 2 )( n ¡ > 0 ; ` > 0 )

Supermultiplets in the D3/D7 theory Masses of supermultiplets: Kruczenski et al. (2003) Field content: M 2 = 4 L 2 R 4 ( n + ` + 1 )( n + ` + 2 )( n ; ` > 0 ) 8 ( ` + 1 ) b osons + f erm i ons fluctuation

Baryons in a phenomenological model Consider a large N baryon: Dirac equation on baryon spectrum: at large N as expected from FT, Witten (1979) B 0 = 1 p N ! " i 1 i 2 ::: i N Ã i 1 ::: Ã i N ( ¢ = 3 2 N ) A d S 5 : ( D = A d S 5 ¡ m ) ª = 0 ; m = ¢ ¡ 2 = 3 2 N ¡ 2 ) M B » N M 2 B = 4 L 2 R 4 ( n N ¡ 3 2 )( n N ¡ 5 2 ) as in Teramond & Brodsky (2004/05)

Leaving the quenched approximation… Quenched approximation: lattice QCD: fermion determinant:, 10-20% error ) quark-loops in QCD correlation functions are ignored AdS/CFT: quenched = probe approximation: no backreaction of the “flavor'' (D7-)brane on the geometry Beyond the quenched approximation: lattice QCD: logarithm of the fermion determinant is nonlocal ) dramatic slow-down of the Monte Carlo algorithms Grassmann variables difficult to handle on computers ) difficult to go beyond the quenched approximation! AdS/CFT: Easier! Take into account the backreaction of the “flavor“ brane, ie. construct fully localized brane intersections

The D3/D7 sugra background Susy-preserving ansatz by Polchinski and Grana (2001): metric: axion-dilaton: singularities: - curvature singularity at  =0 - dilaton divergence at  =  L ( ! Landau pole  L )

The warp factor h(r, ,  ) Poison equation: D. Vaman, I.K. (2005) Fourier expansion: Schrödinger-like equation with log-potential (for   0):, or,,

The warp factor h(r, ,  ) -- solution Solution for For N f  0 series expansion ansatz: Gesztesy and Pittner (1978) solution: recursion relation for p n (x): (n=0,1,2,...)

Logarithmic tadpoles and one-loop vacuum amplitudes Open string one-loop amplitude (to quadr. order in F): Di Vecchia et al. (e.g. hep-th/ ) gauge coupling and  -angle: Results: nonconformal theories lead to (harmless) logarithmic tadpoles in the SUGRA background which reproduce the correct perturbative gauge theory parameters

Summary and Outlook Two extensions of holography with flavor 1) Spectra of fermionic operators: - computed the mass spectrum of spin-½ operators in the D3/D7 theory from the fermionic part of the D7-brane action 2) Beyond the probe approximation - fully localized D3/D7 solution - completed the solution by providing an analytic expression for the warp factor h(r,  ) in terms of a convergent series - related the pathology of the D3/D7 background (dilaton divergence) to the Landau pole in the gauge theory Outlook: - The techniques discussed in this talk should be useful for the holographic computation of baryon spectra including Witten‘s string theory realization of a baryon vertex