Inflation and String Cosmology Andrei Linde Andrei Linde.

Slides:



Advertisements
Similar presentations
The Nuts and Bolts of Inflation Richard Barrett. Dark Energy SeminarGlasgow 29/11/2003 Inflation What is inflation? What is dark energy? Why was inflation.
Advertisements

Theories of gravity in 5D brane-world scenarios
Renata Kallosh Davis, May 16, 2004 Stanford Stanford Deformation, non-commutativity and cosmological constant problem.
超弦理論とインフレーショ ン 向山信治 (東大理) 第1回「超弦理論と宇宙」研究会@尾 道. String Theory? The Cosmic Uroboros by Sheldon Glashow Three mysteries: Inflation, Dark Energy & Dark Matter.
Brane-World Inflation
Inflation in Stringy Landscape Andrei Linde Andrei Linde.
Flux Compactifications: An Overview Sandip Trivedi Tata Institute of Fundamental Research, Mumbai, India Korea June 2008.
String theoretic QCD axions in the light of PLANCK and BICEP2 (QCD axion after BICEP2) Kiwoon KIAS, May 1, 2014 KC, K.S. Jeong and M.S. Seo, arXiv:
The Cosmological Slingshot Scenario A Stringy Proposal for Early Time Cosmology: Germani, NEG, Kehagias, hep-th/ Germani, NEG, Kehagias, arXiv:
Andrei Linde Andrei Linde. Contents: From the Big Bang theory to Inflationary Cosmology Eternal inflation, multiverse, string theory landscape, anthropic.
A theorist’s view of dark energy Andreas Albrecht (UC Davis) UCSC Colloquium Jan
String Cosmology: A Brief Overview Bin Chen Dep. of Phys., Peking Univ. 28th. June, 2008.
The LARGE Volume Scenario: Realisation and Cosmological Implications M. Cicoli, J. Conlon, FQ, [hep-th] + to appear J. Conlon, R. Kallosh, A.
String/Brane Cosmology …for those who have not yet drunk the Kool-Aid C.P. Burgess with J.Blanco-Pillado, J.Cline, C. de Rham, C.Escoda, M.Gomez-Reino,
Cosmology and extragalactic astronomy Mat Page Mullard Space Science Lab, UCL 10. Inflation.
Cosmology with Warped Flux Compactification
Evolutionary effects in one-bubble open inflation for string landscape Daisuke YAMAUCHI Yukawa Institute for Theoretical Physics,
Detecting Cosmic Superstrings Mark G. Jackson Fermilab MGJ, N. Jones and J. Polchinski, hep-th/ MGJ and G. Shiu, hep-th/??? MGJ and S. Sethi, hep-th/???
Moduli Stabilization: A Revolution in String Phenomenology / Cosmology ? F. Quevedo SUSY 2005.
Cosmic challenges for fundamental physics Diederik Roest December 9, 2009 Symposium “The Quantum Universe”
Probing the Structure of Stringy Landscape by Large Scale CMB Experiments Amjad Ashoorioon in collaboration with Ulf H. Danielsson 24 th Nordic Conference.
History of the Universe - according to the standard big bang
SHIFT SYMMETRY and INFLATION in SUPERGRAVITY Ph. Brax and J. Martin hep/th to appear in PRD.
Modern cosmology: a challenge for fundamental physics Diederik Roest (University of Groningen, The Netherlands) November 6, 2009 – UAM, Ciudad de México.
Large Volume String Compactifications hep-th/ , , , , hep-ph/ and to appear F. Quevedo, Cambridge. UKBSM Liverpool 2007.
Cosmic Acceleration in String Theory Diederik Roest DRSTP symposium `Trends in Theory 2009’
Particle Physics and Cosmology Inflation.
Eternal Inflation and Sinks in the Landscape Andrei Linde Andrei Linde.
InflationInflation Andrei Linde Lecture 1. Plan of the lectures: Inflation: a general outlook Basic inflationary models (new inflation, chaotic inflation,
Inflation, String Theory, Andrei Linde Andrei Linde and Origins of Symmetry.
Renata Kallosh CIfAR, May 10, 2007 CIfAR, Whistler, May 10, 2007 Stanford Stanford Based on R. K., A. Linde, , R. K., hep-th/ , R. K., M.
The Universe: a sphere, a donut, or a fractal? Andrei Linde Andrei Linde.
1 Multi-field Open Inflation & Instanton YITP, Kyoto University Kazuyuki Sugimura (Collaborator : D. Yamauchi and M. Sasaki)
Update on String Cosmology Renata Kallosh Renata Kallosh Stanford, March 8, 2008.
Lecture 3: Modified matter models of dark energy Shinji Tsujikawa (Tokyo University of Science)
Cosmology and String Theory F. Quevedo Cambridge CORFU 2005.
Yugo Abe (Shinshu University) July 10, 2015 In collaboration with T. Inami (NTU), Y. Kawamura (Shinshu U), Y. Koyama (NCTS) YA, T. Inami,
We don’t know, all previous history has been wiped out Assume radiation dominated era We have unified three of the forces: Strong, Electromagnetic, and.
Non-Gaussianity, spectral index and tensor modes in mixed inflaton and curvaton models Teruaki Suyama (Institute for Cosmic Ray Research) In collaboration.
Making and Probing Inflation Lev Kofman KITPC Beijing November Making Inflation in String Theory How small can be r Gravity Waves from Preheating.
Open Inflation in the Landscape Misao Sasaki (YITP, Kyoto University) in collaboration with Daisuke Yamauchi (now at ICRR, U Tokyo) and Andrei Linde, Atsushi.
PROBABILITIES IN THE LANDSCAPE Alex Vilenkin Tufts Institute of Cosmology.
Andrei Linde. 1.Why inflationary multiverse? 1.Various measures 2.Counting worlds and minds.
Inflation and String Cosmology Andrei Linde Andrei Linde.
Inflation and Stringy Landscape Andrei Linde. New Inflation V.
Dark Energy In Hybrid Inflation Seongcheol Kim (KAIST) Based on Phys. Rev. D75: (2007)
1 Moduli Stabilization and Cosmology in String Gas Compactification Cosmological Landscape: Strings, Gravity, and Inflation, Seoul, Jiro Soda.
PHY th century cosmology 1920s – 1990s (from Friedmann to Freedman)  theoretical technology available, but no data  20 th century: birth of observational.
InflationInflation Andrei Linde Lecture 2. Inflation as a theory of a harmonic oscillator Eternal Inflation.
Inflation and String Cosmology Andrei Linde Andrei Linde.
Infrared divergences in the inflationary brane world Oriol Pujolàs Yukawa Institute for Theoretical Physics, Kyoto University In collaboration with Takahiro.
Inflation and Branes Bottom-up approach to inflation: reconstruction of acceleration trajectories Top-down approach to inflation: seeks to embed it in.
Holographic Dark Energy and Anthropic Principle Qing-Guo Huang Interdisciplinary Center of Theoretical Studies CAS
Dark Energy in the Early Universe Joel Weller arXiv:gr-qc/
“Planck 2009” conference Padova May 2009 Facing Dark Energy in SUGRA Collaboration with C. van de Bruck, A. Davis and J. Martin.
Towards the Standard Cosmological Model
String Cosmology Andrei Linde. 1. Cosmology: A general outlook 2. Two stages of acceleration. Inflation and dark energy 3. Inflation, SUSY, SUGRA and.
D-term chaotic inflation in supergravity Masahide Yamaguchi (Aoyama Gakuin University) arXiv: Collaboration with Kenji Kadota 21st Aug
Perturbative vs Non- Perturbative Effects for Moduli Stabilisation and Cosmology J. Conlon, FQ [hep-ph] M. Cicoli, J. Conlon, FQ, [hep-th]
Inflation, Stringy Landscape and Anthropic Principle.
Eternal Inflation in Stringy Landscape
Zong-Kuan Guo Department of Physics, Kinki University
The Origin and the Fate of the Universe
Towards the Standard Cosmological Model
Kähler Moduli Inflation
Late-time Cosmology with String Gases
dark matter Properties stable non-relativistic non-baryonic
String/Brane Cosmology
Inflationary multiverse and string theory
Stealth Acceleration and Modified Gravity
Presentation transcript:

Inflation and String Cosmology Andrei Linde Andrei Linde

The Simplest Inflationary Model Eternal Inflation

Predictions of Inflation: 1) The universe should be homogeneous, isotropic and flat,  = 1 + O(10 -4 ) [    Observations: the universe is homogeneous, isotropic and flat,  = 1 + O(10 -2 ) 2)Inflationary perturbations should be gaussian and adiabatic, with flat spectrum, n s = 1+ O(10 -1 ) Observations: perturbations are gaussian and adiabatic, with flat spectrum, n s = 1 + O(10 -2 )

Any problems of principle? 1) We must introduce a small parameter to explain a small amplitude of density perturbations . To explain   one should have m =    Is it a real problem? 2)Transplanckian physics? These effects are not expected to affect basic features of inflationary scenario. In the worst case, one may expect minor corrections to the spectrum of perturbations. These effects vanish for low-scale inflation.

3) Singularity problem This is NOT a problem of inflation. Moreover, inflationary predictions practically do not depend on the existence of the singularity. 4)Cosmological constant problem This is NOT a problem of inflation. Moreover, the only presently known solution of this problem requires inflation, in combination with anthropic principle and string theory landscape.

5) Inflation requires initial homogeneity on scale greater than horizon In simplest models of chaotic inflation homogeneity is requires on the smallest possible scale, Planck length, which is not a problem. In low-scale inflation, such as new or hybrid inflation, this was a real problem. However, this problem was solved by considering inflation in compact topologically nontrivial flat or open universes: In this case homogeneity is required on Planck scale, as in chaotic inflation. A.L. hep-th/

Are there any real problems of inflation? The main problem is to construct realistic models of inflation in the situation when the final theory of all fundamental interactions is still absent.

Inflation in String Theory The volume stabilization problem: A potential of the theory obtained by compactification in string theory of type IIB: The volume stabilization problem: A potential of the theory obtained by compactification in string theory of type IIB: The potential with respect to X and Y is very steep, these fields rapidly run down, and the potential energy V vanishes. We must stabilize these fields. Volume stabilization: KKLT construction Kachru, Kallosh, A.L., Trivedi 2003 Burgess, Kallosh, Quevedo, 2003 X and Y are canonically normalized field corresponding to the dilaton field and to the volume of the compactified space;  is the field driving inflation Dilaton stabilization: Giddings, Kachru, Polchinski 2001

Volume stabilization Basic steps of the KKLT scenario: AdS minimum Metastable dS minimum Kachru, Kallosh, A.L., Trivedi ) Start with a theory with runaway potential discussed above 2) Bend this potential down due to (nonperturbative) quantum effects 3) Uplift the minimum to the state with positive vacuum energy by adding a positive energy of an anti-D3 brane in warped Calabi-Yau space

Main conclusions after 2 years of investigation: It is possible to stabilize internal dimensions, and obtain an accelerating universe. Eventually, our part of the universe will decay and become ten-dimensional, but it will only happen in years n Apparently, vacuum stabilization can be achieved in different ways. This means that the potential energy V of string theory may have minima where we (or somebody else) can enjoy life…

Related ideas existed long before the stringy landscape Example: Supersymmetric SU(5) V SU(5)SU(3)xSU(2)xU(1)SU(4)xU(1) Weinberg 1982: No way to tunnel from SU(5) to SU(3)xSU(2)XU(1) A.L 1983: Inflationary fluctuations bring us there

Self-reproducing Inflationary Universe

String Theory Landscape Perhaps different minima Bousso, Polchinski; Susskind; Douglas, Denef,… Lerche, Lust, Schellekens 1987

Stringy landscape provides us with a DISCRETE set of parameters corresponding to vacua of string theory. In addition, we may have many CONTINUOUS parameters, such as the amplitude of density perturbations, the ratio of dark matter to baryons, etc., which depend on cosmological dynamics.

The simplest curvaton model A.L., Mukhanov, astro-ph/ Consider a light field  during inflation with Hubble constant H. Bunch-Davies distribution of fluctuations: The main contribution to these fluctuations is given by exponentially large wavelengths

Interpretation:Interpretation: Because of the fluctuations, curvaton typically takes values of the order + H 2 /m or - H 2 /m in domains separated by walls where it vanishes (shown as a shoreline in the figure below). A typical size of these domains is

Amplitude of the curvaton perturbations Amplitude of the curvaton perturbations The constant C shows the energy density of the curvaton particles produced during reheating. As far as we know, this contribution previously was ignored, but it can be very large. The amplitude of density perturbations depends on our position in the curvaton landscape. In the interior of the exponentially large islands the perturbations are (locally) gaussian. On a larger scale including many domains the perturbations are nongaussian. A.L., Mukhanov, astro-ph/

Usually we assume that the amplitude of inflationary perturbations is constant,  ~ everywhere. However, in the curvaton scenario the value of  is different in different exponentially large parts of the universe. Curvaton Web A.L., Mukhanov, astro-ph/

Consider inflaton and curvaton with masses M >> m Curvaton-Inflaton Transmutations Curvaton-Inflaton Transmutations  is a curvaton only near the walls   everywhere else it is an inflaton  The amplitude of perturbations is almost everywhere  but it grows near the walls, forming the curvaton web. Even if initially  >> , then during eternal inflation the fluctuations of the field  are generated, and it becomes much greater than  almost everywhere in the universe. Then the field  rolls down (its potential is more steep) and the curvaton  drives inflation, i.e. it becomes the inflaton. Bartolo, Liddle 2003, A.L., Mukhanov 2005

Dark Energy (Cosmological Constant) is about 73% of the cosmic pie. Why? What’s about Dark Matter, another 23% of the pie? Why there is 5 times more dark matter than ordinary matter?

Inflation and Cosmological Constant 1) Anthropic solutions of the CC problem using inflation and fluxes of antisymmetric tensor fields (A.L. 1984), multiplicity of KK vacua (Sakharov 1984), and slowly evolving scalar field (Banks 1984, A.L. 1986). All of these authors took for granted that we cannot live in the universe with 2) Derivation of the anthropic constraint (Weinberg 1987, Martel, Shapiro, Weinberg 1997) Three crucial steps in finding the anthropic solution of the CC problem: 3) String landscape (Bousso-Polchinski 2000, KKLT 2003, Susskind 2003, Douglas 2003,…)

Latest anthropic constraints on  Aguirre, Rees, Tegmark, and Wilczek, astro-ph/ observed value

Dark matter: the axion scenario Standard lore: If the axion mass is smaller than eV, the amount of dark matter in the axion field contradicts observations, for a typical initial value of the axion field. Anthropic argument: Due to inflationary fluctuations, the amount of the axion dark matter is a CONTINUOUS RANDOM PARAMETER. We can live only in those parts of the universe where the initial value of the axion field was sufficiently small ( A.L. 1988).

Latest anthropic constraints on Dark Matter  Aguirre, Rees, Tegmark, and Wilczek, astro-ph/ Anthropic predictions for Dark Matter are even better than the predictions for the cosmological constant ! observed value

Why do we live in a 4D space? Why do we live in a 4D space? Ehrenfest, 1917: Stable planetary and atomic systems are possible only in 4D space. Indeed, for D > 4 planetary system are unstable, whereas for D < 4 there is NO gravity forces between stars and planets. If one wants to suggest an alternative solution to a problem that is solved by anthropic principle, one is free to try. But it may be more productive to concentrate on many problems that do not have an anthropic solution. For example, there is no anthropic replacement for inflation

Two types of string inflation models: Moduli Inflation. Moduli Inflation. The simplest class of models. They use only the fields that are already present in the KKLT model. Brane inflation. Brane inflation. The inflaton field corresponds to the distance between branes in Calabi-Yau space. Historically, this was the first class of string inflation models. Moduli Inflation. Moduli Inflation. The simplest class of models. They use only the fields that are already present in the KKLT model. Brane inflation. Brane inflation. The inflaton field corresponds to the distance between branes in Calabi-Yau space. Historically, this was the first class of string inflation models.

Inflation in string theory KKLMMT brane-anti-brane inflation Racetrack modular inflation D3/D7 brane inflation Kahler modular inflation

D3/D7 inflation Unlike in the brane-antibrane scenario, inflation in D3/D7 model does not require fine-tuning because of the shift symmetry Herdeiro, Hirano, Kallosh, Dasgupta 2001, 2002

Let flowers blossom Let flowers blossom  < 0  = 0  > 0

In the beginning one has eternal inflation when the fields jumped from one de Sitter minimum to another. However, at some point the fields must stop jumping, as in old inflation, and start rolling, as in new or chaotic inflation: the last stage of inflation must be of the slow-roll type. Otherwise we would live in an empty open universe with  << 1. How can we create initial conditions for a slow-roll inflation after the tunneling?

V Initial Conditions for D3/D7 Inflation Slow roll inflation Eternal inflation in a valley with different fluxes The field drifts in the upper valley due to quantum fluctuations and then tunneling occurs due to change of fluxes inside a bubble H >> m H >>> m s In D3/D7 scenario flatness of the inflaton direction does not depend on fluxes

The resulting scenario: The resulting scenario: 1) The universe eternally jumps from one dS vacuum to another due to formation of bubbles. Each bubble contains a new dS vacuum. The bubbles contain no particles unless this process ends by a stage of a slow-roll inflation. Here is how: 2) At some stage the universe appears in dS state with a large potential but with a flat inflaton direction, as in D3/D7 model. Quantum fluctuations during eternal inflation in this state push the inflaton field S in all directions along the inflaton valley. 3) Eventually this state decays, and bubbles are produced. Each of these bubbles may contain any possible value of the inflaton field S, prepared by the previous stage. A slow-roll inflation begins and makes the universe flat. It produces particles, galaxies, and the participants of this conference:)