Documentation Standards

Slides:



Advertisements
Similar presentations
Digital Design: Combinational Logic Blocks
Advertisements

Modular Combinational Logic
Digital Logic Design Week 7 Encoders, Decoders, Multiplexers, Demuxes.
CS370 – Spring 2003 Programmable Logic Devices PALs/PLAs.
111 Basic Circuit Elements n Standard TTL Small-Scale Integration: 1 chip = 2-8 gates n Requires numerous chips to build interesting circuits n Alternative:
Decoders/DeMUXs CS370 – Spring Decoder: single data input, n control inputs, 2 outputs control inputs (called select S) represent Binary index of.
1 KU College of Engineering Elec 204: Digital Systems Design Lecture 9 Programmable Configurations Read Only Memory (ROM) – –a fixed array of AND gates.
Documentation Standards Programmable Logic Devices Decoders
EE365 Adv. Digital Circuit Design Clarkson University Lecture #7 Intro to MSI PLDs and Decoders.
1 Designing with MSI Documentation Standards  Block diagrams first step in hierarchical design  Schematic diagrams  Timing diagrams  Circuit descriptions.
Combinational Logic Chapter 4.
Combinational Logic1 DIGITAL LOGIC DESIGN by Dr. Fenghui Yao Tennessee State University Department of Computer Science Nashville, TN.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 2 Combinational Logic Design.
Design Of Combinational Logic Circuits
Multiplexer MUX. 2 Multiplexer Multiplexer (Selector)  2 n data inputs,  n control inputs,  1 output  Used to connect 2 n points to a single point.
Overview Part 1 – Design Procedure 3-1 Design Procedure
Part 2: DESIGN CIRCUIT. LOGIC CIRCUIT DESIGN x y z F F = x + y’z x y z F Truth Table Boolean Function.
Multiplexers DeMultiplexers XOR gates
Combinational Circuits
Combinational Logic Chapter 4.
Introduction to Digital Logic Design Appendix A of CO&A Dr. Farag
ECE 2110: Introduction to Digital Systems Chapter 6 Combinational Logic Design Practices Decoders.
Combinational Logic Chapter 4. Digital Circuits Combinational Circuits Logic circuits for digital system Combinational circuits the outputs are.
Sahar Mosleh PageCalifornia State University San Marcos 1 Multiplexer, Decoder and Circuit Designing.
Digital Computer Concept and Practice Copyright ©2012 by Jaejin Lee Logic Circuits I.
Documentation Standards Circuit specification. –Description of what the system is supposed to do, including a description of all inputs and outputs and.
Digital Computer Concept and Practice Copyright ©2012 by Jaejin Lee Logic Circuits I.
Combinational Logic. Digital Circuits Introduction Logic circuits for digital systems may be combinational or sequential. A combinational circuit.
ENG241 Digital Design Week #4 Combinational Logic Design.
1 Lecture 9 Demultiplexers Programmable Logic Devices  Programmable logic array (PLA)  Programmable array logic (PAL)
Combinational Design, Part 3: Functional Blocks
Kuliah Rangkaian Digital Kuliah 6: Blok Pembangun Logika Kombinasional Teknik Komputer Universitas Gunadarma.
Multiplexers. Functional Description and Symbols.
Chapter
Chap 2. Combinational Logic Circuits
Decoders. A decoder is multiple-input, multiple-output logic circuit that converts coded inputs into coded outputs. Input code with fewer bits than the.
Chapter # 4: Programmable Logic
1 CS 151: Digital Design Chapter 3: Combinational Logic Design 3-1Design Procedure CS 151: Digital Design.
CS151 Introduction to Digital Design Chapter 3: Combinational Logic Design 3-1 Design Procedure 1Created by: Ms.Amany AlSaleh.
1 EE121 John Wakerly Lecture #5 Documentation Standards Programmable Logic Devices Decoders.
1 Multiplexers (Data Selectors) A multiplexer (MUX) is a device that allows several low-speed signals to be sent over one high-speed output line. “Select.
MSI Combinational logic circuits
ECE 2110: Introduction to Digital Systems Chapter 6 Review.
ECE 3110: Introduction to Digital Systems Chapter 6 Combinational Logic Design Practices Decoders.
ACOE161Digital Circuit Design1 Design Of Combinational Logic Circuits.
MSI Circuits.
FIGURE 3.1 Two-variable K-map
ECE 3130 Digital Electronics and Design
Chapter # 4: Programmable Logic
CSE 140 Lecture 12 Combinational Standard Modules
ECE 2110: Introduction to Digital Systems
Combinational Functions and Circuits
Boolean Algebra and Combinational Logic
Lecture 9 Logistics Last lecture Today HW3 due Wednesday
Lecture 4: Combinational Functions and Circuits
ECE 2110: Introduction to Digital Systems Chapter 6 Combinational Logic Design Practices Decoders.
ECE 434 Advanced Digital System L03
CSE 140 Lecture 12 Combinational Standard Modules
Combinatorial Logic Design Practices
FIGURE 4.1 Block diagram of combinational circuit
Lecture 8 Logistics Last lecture Last last lecture Today
Programmable Configurations
Lecture 10 Logistics Last lecture Today
13 Digital Logic Circuits.
Overview Last lecture Timing; Hazards/glitches
Digital System Design Combinational Logic
Principles & Applications
SYEN 3330 Digital Systems Chapter 2 – Part 1 SYEN 3330 Digital Systems.
Example of a Combinatorial Circuit: A Multiplexer (MUX)
Presentation transcript:

Documentation Standards Block diagrams first step in hierarchical design Schematic diagrams Timing diagrams Circuit descriptions

Documentation standard Block Diagram

Schematic diagrams Details of component inputs, outputs, and interconnections Reference designators Title blocks Names for all signals Page-to-page connectors

Block Diagram For Wake (project1) Input keys Digit1 Digit0 8 Select one of Mux Display D1 D0 Error_Key1 Error_Key0 (warmer + cooler) From BCD calculator To BCD To Error Wake Period

Chapter : Design modules

I. Using MUX to Implement logic function A multiplex (Data selector) is a CLN module with: 2n data inputs n control inputs 1 output Depending on the control inputs, the multiplexer connects one of the inputs to the output line. Block diagram of an 4-to-1 multiplexer: I0 I1 I2 I3 D0 D1 D2 D3 Y’ Data inputs 4-to-1 MUX Y C1 C0 Data select

I. Using MUX to Implement logic function Circuit of an 4-to-1 multiplexer D0 C1’C0’D0 D1 Y’ C1’C0D1 OR Y D2 C1C0’D2 D3 C1C0D3 May add an enable signal E C1 C0

I. Using MUX to Implement logic function Block diagram of an 8-to-1 multiplexer: D0 D1 D2 D3 D4 D5 D6 D7 C2 C1 C0 I0 I1 I2 I3 I4 I5 I6 I7 Output 8-to-1 MUX Data inputs Data select

I. Using MUX to Implement logic function Circuit of an 8-to-1 mulmtiplexer

I. Using MUX to Implement logic function Truth table of an 8-to-1 mulmtiplexer

I. Using MUX to Implement logic function Example of design A 2n input lines and n selection lines MUX may be used to realize any function of (n+1) variables Example Use an 8-to-1 MUX to realize the following function of 4 variables F( A,B,C,D) = (0,2,4,5,6,8,10,13) = A’B’C’D’ + A’B’CD’ + A’BC’D’ + A’BC’D + A’BCD’ + AB’C’D’ + AB’CD’ + ABC’D Solution Use the variables A, B, C as the control (selection) inputs and use the remaining variable D to determine the input lines. Rewrite F to to determine a factor for each input combination ABC: F( A,B,C,D) = A’B’C’D’ + A’B’CD’ + A’BC’(D’ + D) + A’BCD’ + AB’C’D’ + AB’CD’ + ABC’D + ABC (0)

I. Using 8-to-1 MUX to Implement logic function Example Solution (Continued ….) F( A,B,C,D) = A’B’C’D’ + A’B’CD’ + A’BC’(D’ + D) + A’BCD’ + AB’C’D’ + AB’CD’ + ABC’D + ABC (0) So the input to the 8-to-1 MUX are given by : I0=D’, I1=D’, I2=1, I3=D’, I4=D’, I5=D’, I6=D, I7=0 1 D’ 1 D D0 D1 D2 D3 D4 D5 D6 D7 F(A,B,C,D) 8-to-1 MUX C2 C1 C0 A B C

I. Using 8-to-1 MUX to Implement logic function Example Same function F(A,B,C,D) Use BCD as the selection (control ) lines F( A,B,C,D) = (0,2,4,5,6,8,10,13) = A’B’C’D’ + A’B’CD’ + A’BC’D’ + A’BC’D + A’BCD’ + AB’C’D’ + AB’CD’ + ABC’D = B’C’D’ ( ) + B’C’D ( ) + B’CD’ ( ) + B’CD ( ) + BC’D’ ( ) + BC’D ( ) + BCD’ ( ) + BCD ( ) = B’C’D’ ( A+A’ ) + B’C’D ( 0 ) + B’CD’ (A’ + A) + B’CD ( 0 ) + BC’D’ ( A’) + BC’D ( A’+A ) + BCD’ ( A’ ) + BCD ( 0 ) 1 1 1

I. Using 8-to-1 MUX to Implement logic function Example 1 A’ D0 D1 D2 D3 D4 D5 D6 D7 F(A,B,C,D) 8-to-1 MUX C2 C1 C0 B C D Exercise Repeat using as selection lines: A, C, D A, B, D

I. Using 4-to-1 MUX to Implement logic function Example F(A,B,C,D) = (3,4,8,9,10,13,14,15) = A’B’CD + A’BC’D’ + AB’C’D’ + AB’C’D + AB’CD’ + ABC’D + ABCD’ + ABCD Use AB for Selection lines and factor out the various combinations of AB = A’B’ ( CD ) + A’B ( C’D’ ) + AB’( C’D’ + C’D + CD’ ) + AB ( CD’ + CD’ + CD ) = A’B’ ( CD ) + A’B ( C’D’ ) + AB’( C’ + D’ ) + AB ( C + D ) Implement the circuit of the input lines using NAND (or other) gates

I. Using 4-to-1 MUX to Implement logic function Example C D C’ D’ D0 D1 D2 D3 F’ 4-to-1 MUX F C1 C0 A B

II. Decoders Depending on the control inputs, the multiplexer connects one of the inputs to the output line. Block diagram of an 4-to-1 multiplexer:

II. Decoders General decoder structure Map each input code to one of the output Typically n inputs, 2n outputs 2-to-4, 3-to-8, 4-to-16, etc.

II. Decoders Binary 2-to-4 decoder Note “x” (don’t care) notation.

2-to-4-decoder logic diagram II. Decoders 2-to-4-decoder logic diagram 00 01 10 11

II. Decoders Input buffering (less load) NAND gates (faster) MSI 2-to-4 decoder Input buffering (less load) NAND gates (faster) 00 01 10 11

II. Decoders Decoder Symbol

II. Decoders Complete 74x139 Decoder

II. Decoders More decoder symbols

II. Decoders 000 3-to-8 Decoder 001 010 011 100 101 110 111

II. Decoders 74x138 3-to-8-decoder symbol

I. Using decoders to Implement logic function Example: Given F1 =  X,Y,Z (1,2,3) and F2 =  X,Y,Z (3,5,6,7) Implementation using 3-to-8 Decoder 1 2 3 4 5 6 7 X Y Z F1 OR F2 OR

I. Using decoders to Implement logic function Example: Given F =  X,Y,Z (0,2,3,4,6,7) Implementation using 3-to-8 Decoder We will implement the complement of F and “NOT” the result F’ = m1 + m5 1 2 3 4 5 6 7 X Y Z F F’ OR

III. Programmable Logic devices Programmable Logic Arrays (PLAs) Any combinational logic function can be realized as a sum of products. Idea: Build a large AND-OR array with lots of inputs and product terms, and programmable connections. n inputs AND gates have 2n inputs -- true and complement of each variable. m outputs, driven by large OR gates Each AND gate is programmably connected to each output’s OR gate. p AND gates (p<<2n)

Example: 4x3 PLA, 6 product terms III. Programmable Logic devices Example: 4x3 PLA, 6 product terms

Compact representation III. Programmable Logic devices Compact representation Input programming Output programming

III. Programmable Logic devices Some product terms

IV. Demultiplexer . . . … m = 2n - 1 General description 1-to-2n Demultiplexer has: 1- input Multiple outputs n select lines Function: Route the single input to the selected output O0 O1 Om . . Data input I . 1-to-2n DEMUX … Select lines m = 2n - 1

Function table of a 1-to-4 Demux IV. Demultiplexer Function table of a 1-to-4 Demux O0 O1 O2 O3 Data input I 1-to-4 DEMUX x y Select lines x y O0 O1 O2 O3 0 0 I 0 0 0 O1 = x‘y’I O2 = x’y I O3 = x y’I O4 = x y I 0 1 0 I 0 0 1 0 0 0 I 0 1 1 0 0 0 I

V.Design by Cascading Cascading MUXes Design an 8-to-1 MUX using 4-to-1 MUX and other gates I0 I1 I2 I3 I4 I5 I6 I7 D0 D1 D2 D3 D4 D5 D6 D7 Output 8-to-1 MUX Data inputs En C2 C1 C0 Data select

V.Design by Cascading 1 Cascading MUXes Design an 8-to-1 MUX using 4-to-1 MUX and other gates I0 I1 I2 I3 D0 D1 D2 D3 4-to-1 MUX Output En C1 C0 OR I4 I5 I6 I7 I0 I1 I2 I3 D0 D1 D2 D3 4-to-1 MUX 1 C1 C0 En C2 C1 C0

V. Design by cascading Decoders Recall: Decoder with an enable signal En Note “x” (don’t care) notation.

V. Design by cascading Decoders Recall: Decoder with an enable signal En Decoder 2-to-4 d0 d1 d2 d3 i0 i1 En 1-to-2 d0 d1 i0 En En i0 d0 d1 0 X 1 0 1 1 0 0 0 1 En i0 i1 d0 d1 d2 d3 0 X X 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 d0 d1 i0 En

V. Design by cascading Decoders Design of a 2-to-4 decoder using 1-to-2 decoders 1-to-2 d0’ d1’ i0’ En’ En i1 i0 d0 d1 d2 d3 2-to-4 Decoder Decoder 2-to-4 d0 d1 d2 d3 i0 i1 En

V. Design by cascading Decoders Design of a 2-to-4 decoder using 1-to-2 decoders 1-to-2 d0’ d1’ i0’ En’ En i1 i0 d0 d1 d2 d3 2-to-4 Decoder Operation En enable or disable the decoder i1=0 enables the top decoder I1=1 enables the lower decoder

V. Design by cascading Decoders Design of a 4-to-16 decoder using 2-to-4 decoders 2-to-4 d0 d1 d2 d3 En i1 i0 En i3 i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15

VI.Modular Design Goal Use existing components or design subcomponents as building blocks of higher circuit Types of solutions Casdading components Ripple design Some outpout at level i are used input at the next level (i+1) Linear cascading of elements

Two types of design possible: VI.Modular Design Motivations Design of a 2 bits binary adder X Binary adder S Y S = X + Y X=[X1X0], Y=[Y1Y0], S=[S2S1S0] Two types of design possible: Brute force approach: Draw a truth table and derive the expressions of the output variable Iterative design

Example: 2 bits binary adder VI.Modular Design Example: 2 bits binary adder X1 X0 Y1 Y0 S0 S1 S0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 1 What if we want to do design a 5 bits adder: Truth table with 10 variables Not pratical 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0