Summing planar diagrams

Slides:



Advertisements
Similar presentations
Martín Schvellinger Instituto de Física de La Plata - CONICET Departamento de Física - UNLP The gauge/gravity duality and Non-Relativistic Quantum Field.
Advertisements

Toward M5-branes from ABJM action Based on going project with Seiji Terashima (YITP, Kyoto U. ) Futoshi Yagi (YITP, Kyoto U.)
On d=3 Yang-Mills-Chern- Simons theories with “fractional branes” and their gravity duals Ofer Aharony Weizmann Institute of Science 14 th Itzykson Meeting.
Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,
Brane-World Inflation
Instantons in Deformed Supersymmetric Gauge Theories Shin Sasaki (University of Helsinki) Based on the work [hep-th/ JHEP 07 (2007) 068 ] [hep-th/ ,
Construction of BPS Solitons via Tachyon Condensation So RIKEN based on the work with T. Asakawa and K. Ohta hep-th/0603***
String Theory A picture book.
11 3d CFT and Multi M2-brane Theory on M. Ali-Akbari School of physics, IPM, Iran [JHEP 0903:148,2009] Fifth Crete regional meeting in string theory Kolymbari,
The Topological G 2 String Asad Naqvi (University of Amsterdam) (in progress) with Jan de Boer and Assaf Shomer hep-th/0506nnn.
Gauge/gravity duality ・ Strongly coupled gauge theory ( in large N limit ) ・ String theory gravity in a curved space AdS/CFT [1997, Maldacena] D-brane.
8/1(Thu), 2013 Parallel talk (Theoretical development) Daisuke Kadoh (KEK) D.K. and Syo Kamata, in preparation TexPoint fonts used in.
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.
Gauge/Gravity Duality 2 Prof Nick Evans AdS/CFT Correspondence TODAY Quarks Deforming AdS Confinement Chiral Symmetry Breaking LATER Other brane games.
Giant Magnon and Spike Solutions in String Theories Bum-Hoon Lee Center for Quantum SpaceTime(CQUeST)/Physics Dept. Sogang University, Seoul, Korea PAQFT08,
Chanyong Park 35 th Johns Hopkins Workshop ( Budapest, June 2011 ) Based on Phys. Rev. D 83, (2011) arXiv : arXiv :
Semi-Classical strings as probes of AdS/CFT M. Kruczenski Purdue University Based on: arXiv: R. Roiban, A. Tirziu, A. Tseytlin, M.K. arXiv:
Random Matrix Theory Workshop NBIA May 2007 Large N double scaling limits in Gauge Theories and Matrix Models Gaetano Bertoldi Swansea University.
1 Superstring vertex operators in type IIB matrix model Satoshi Nagaoka (KEK) with Yoshihisa Kitazawa (KEK & Sokendai) String Theory and Quantum Field.
3rd International Workshop On High Energy Physics In The LHC Era.
Gauge/Gravity Duality 2 Prof Nick Evans AdS/CFT Correspondence TODAY Quarks Deforming AdS Confinement Chiral Symmetry Breaking LATER Other brane games.
1 Interacting Higher Spins on AdS(D) Mirian Tsulaia University of Crete.
Spin Chain in Gauge Theory and Holography Yong-Shi Wu Department of Physics, University of Utah, Center for Advanced Study, Tsinghua University, and Shanghai.
Supersymmetry and Gauge Symmetry Breaking from Intersecting Branes A. Giveon, D.K. hep-th/
Spiky strings, light-like Wilson loops and a pp-wave anomaly M. Kruczenski Purdue University Based on: arXiv: arXiv: A. Tseytlin, M.K.
Strings in AdS pp-waves M. Kruczenski Purdue University Based on: arXiv: arXiv: A. Tseytlin, M.K. arXiv: arXiv: R. Ishizeki,
Large spin operators in string/gauge theory duality M. Kruczenski Purdue University Based on: arXiv: (L. Freyhult, A. Tirziu, M.K.) Miami 2009.
Spiky Strings in the SL(2) Bethe Ansatz
Planar diagrams in light-cone gauge hep-th/ M. Kruczenski Purdue University Based on:
Spiky Strings and Giant Magnons on S 5 M. Kruczenski Purdue University Based on: hep-th/ (Russo, Tseytlin, M.K.)
Strings in AdS pp-waves M. Kruczenski Purdue University Based on: arXiv: A. Tseytlin, M.K. arXiv: R. Ishizeki, A. Tirziu, M.K. + work.
String / gauge theory duality and ferromagnetic spin chains Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov M. Kruczenski Princeton.
Integrability and Bethe Ansatz in the AdS/CFT correspondence Konstantin Zarembo (Uppsala U.) Nordic Network Meeting Helsinki, Thanks to: Niklas.
Constraints on renormalization group flows Based on published and unpublished work with A.Dymarsky,Z.Komargodski,S.Theisen.
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
GAUGE/GRAVITY AND HEAVY ION PHYSICS How string theory might say something about strong coupling Wilke van der Schee June 29, 2011.
Super Yang Mills Scattering amplitudes at strong coupling Juan Maldacena Based on L. Alday & JM arXiv: [hep-th] & to appear Strings 2007, Madrid.
Gauge Theory, Superstrings and Supermagnets Volker Schomerus SYSY Goettingen 2012.
Multi-quark potential from AdS/QCD based on arXiv: Wen-Yu Wen Lattice QCD.
Finite N Index and Angular Momentum Bound from Gravity “KEK Theory Workshop 2007” Yu Nakayama, 13 th. Mar (University of Tokyo) Based on hep-th/
Super Virasoro Algebras from Chiral Supergravity Ibaraki Univ. Yoshifumi Hyakutake Based on arXiv:1211xxxx + work in progress.
Toward the Determination of Effective Action in Superstring Theory and M-Theory Yoshifumi Hyakutake (Osaka Univ.)
Domain-wall/QFT correspondence Wen-Yu Wen Academia Sinica Feb 24, 2006 A Bridge Connecting Gravity and Gauge Theory.
Matrix Cosmology Miao Li Institute of Theoretical Physics Chinese Academy of Science.
AdS/CFT Correspondence and Entanglement Entropy Tadashi Takayanagi (Kyoto U.) Based on hep-th/ [Phys.Rev.Lett.96(2006)181602] hep-th/ [JHEP.
HIGHER SPIN SUPERGRAVITY DUAL OF KAZAMA-SUZUKI MODEL Yasuaki Hikida (Keio University) Based on JHEP02(2012)109 [arXiv: [hep-th]]; arXiv:
Holography of Wilson-loop expectation values with local operator insertions Akitsugu Miwa ( Univ. of Tokyo, Komaba ) work in collaboration with Tamiaki.
Wilson Loops in AdS/CFT M. Kruczenski Purdue University Miami Based on work in collaboration with Arkady Tseytlin (Imperial College). To appear.
Holographic QCD in the medium
1 Superstring vertex operators in type IIB matrix model arXiv: [hep-th], [hep-th] Satoshi Nagaoka (KEK) with Yoshihisa Kitazawa (KEK &
Creation of D9-brane — anti-D9-brane Pairs from Hagedorn Transition of Closed Strings Hokkaido Univ. Kenji Hotta.
The nonperturbative analyses for lower dimensional non-linear sigma models Etsuko Itou (Osaka University) 1.Introduction 2.The WRG equation for NLσM 3.Fixed.
Seiberg Duality James Barnard University of Durham.
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
B.-H.L, R. Nayak, K. Panigrahi, C. Park On the giant magnon and spike solutions for strings on AdS(3) x S**3. JHEP 0806:065,2008. arXiv: J. Kluson,
Heavy quark energy loss in finite length SYM plasma Cyrille Marquet Columbia University based on F. Dominguez, C. Marquet, A. Mueller, B. Wu and B.-W.
Ramond-Ramond Couplings of D-branes Collaborators: Koji Hashimoto (Osaka Univ.) Seiji Terashima (YITP Kyoto) Sotaro Sugishita (Kyoto Univ.) JHEP1503(2015)077.
Brief review of basic string theory Bosonic string Superstring three different formulations of superstring (depending on how to deal with the fermionic.
Andrej Ficnar Columbia University Hard Probes 2010, Eilat, Israel October 12, 2010 Nonconformal Holography of Heavy Quark Quenching Andrej Ficnar, Jorge.
Electic-Magnetic Duality On A Half-Space Edward Witten March 9, 2008.
Quantum Mechanical Models for Near Extremal Black Holes
Gauge/String Duality and Integrable Systems
STRING THEORY AND M-THEORY: A Modern Introduction
Cyrille Marquet Columbia University
Tachyon vacuum in Schnabl gauge in level truncation
Quantum properties of supersymmetric gauge theories
Quark Mass in Holographic QCD
Heavy-to-light transitions on the light cone
Graviton Propagators in Supergravity and Noncommutative Gauge Theory
QCD at very high density
Presentation transcript:

Summing planar diagrams in light-cone gauge M. Kruczenski Purdue University Based on: hep-th/0603202 hep-th/0703218

Summary Motivation: large-N, D-branes, AdS/CFT, results ● Introduction Motivation: large-N, D-branes, AdS/CFT, results D-brane interactions: lowest order, light-cone gauge ● D-brane interactions in planar approximation Dual closed string Hamiltonian: H = H0 - λ P P: hole insertion ● Supergravity result: H = H0 - λ P’

● Comments on possible field theory applications ● Calculation of P in the bosonic string (Neumann coeff. , scattering from D-branes) ● Comparison of P and P’ ● Calculation of P in the D3-brane open superstring (Scattering of generic closed strings states from D-branes) ● Comments on possible field theory applications ● Conclusions

q q q q Large N limit (‘t Hooft) String picture Fund. strings ( Susy, 10d, Q.G. ) mesons π, ρ, ... Quark model QCD [ SU(3) ] q q q q Large N-limit [SU(N)] Effective strings Strong coupling Lowest order: sum of planar diagrams (infinite number) Suggested using light-cone gauge / frame.

D-branes (Polchinski) Region of space where strings world-sheets can end. Open strings. Low energy: SU(N) gauge th. Emission of graviton D-branes have mass If N, # of D-branes is large mass large deforms space e.g. D3- brane: [2] [6] Suggests an interesting rep. of the large-N limit

AdS/CFT (Maldacena) N = 4 SYM II B on AdS5xS5 We can extract the gauge theory, namely the low energy limit and obtain a duality (no direct derivation) Open strings Sugra background N = 4 SYM II B on AdS5xS5 S5: X12+X22+…X62 = R2 AdS5: Y12+Y22+…-Y52-Y62 =-R2 λ large → string th. λ small → field th. fixed

Planar approximation ( gs → 0, N→∞, gsN fixed ) X (gsN)n x gs2 We expect that summing these diagrams gives the propagation of closed strings in the supergravity background. In the bosonic case we get: H = H0 - λ P (open strings) (supergravity) In the supersymmetric case they agree

Open string: zero point energy D-brane interactions Open string: zero point energy [schematic: divergences have to be regulated] s: 0 p+

Length = p+ ● Open string Agree ● Closed string Z=

Boundary states Conditions for boundary state Solutions

∑ (gsN)n Higher orders (Include open string interactions) Open strings can split and join. p+, the length is conserved, (gsN)4 gs4 N2 = (gsN)4 / N2 ∑ (gsN)n n = propagation of a single closed string n slits

This gives: We define the operator P(σL,σR) that maps the string from τ1-ε to τ1+ε

To sum we use the closed string point of view Where . Define We can define: P essentially inserts a hole

Possible problems We need This may need corrections if the path integral is not well defined. For example if two slits collide there can be divergences that need to be subtracted. This can modify P and include higher order corrections in λ . In fact, at first sight this seems even necessary since the propagation of closed strings in the supergravity bakg. Depends on the metric that has non-trivial functions of λ. We analyze this problem now. Even if there are extra corrections, P as defined contains important information as we will see.

Closed strings in the D3-brane background Take: Since we set E=1 and get: Not good and

Which is indeed of the form with The near horizon (field th.) limit is: which describes closed strings in AdS5xS5

What is P in the open string side ? Identified (cylinder) Scattering of a closed string by a D-brane Vertex representation of P: Neumann Dirichlet:

Solution: (Neumann) Compute coefficients. , Conf. transf. r,s=1,2

Result: with

All together we get: Small holes (σ0→0) Gives: Tachyon pole

We reproduced the operator P in a certain (small hole) limit We reproduced the operator P in a certain (small hole) limit. There are extra terms due to the fact that we consider the bosonic string. (tachyon). Should be absent in the superstring. There are also extra terms which do not correspond to the q2 → 0 pole. However we should take into account that the hamiltonian form the background is classical and we should have expected further corrections. In pple. the Hamiltonian we proposed should reproduce order by order the planar diagrams (by definition).

The supersymmetric case: D3 open superstrings We need to add fermionic degrees of freedom. θA, λA, right moving and θA, λA left moving. There is an SO(6)=SU(4) symmetry. The index A is in the fundamental or anti-fundamental (upper or lower). Conditions: (preserving half the supersymmetry) ~ ~

Can be solved again in terms of a vertex state: However extra operator insertions are required: x x Why? It is known in the open string channel but we can also see it in the closed string channel

Before going into that it is useful to compute the supersymmetric algebra: Notice that the Q’s commute to translations in s. If they commute to H, since H has a term of order l then so should the Q’s implying the possible presence of a l2 term in H. This is actually the case in the open string channel but not here.

Operator insertions create singularities for other operators, e.g. translation operator. Here: Pole singularities since slit is not invariant there This indeed can be verified by explicit computation. However it implies by the Jacobi identity: is not supersymmetric!

In fact it is also not invariant under U(1) rotations in the XL,R directions (q=+2) as verified by explicit computation and also by small hole limit and continuity argument. To make P invariant under supersymmetry and U(1) we insert operators at the end points: where and e 0.

It is convenient also to write it in normal ordered form: with where ZI and YA are linear combinations of creation operators giving the divergent parts of YI and QA. The matrix element of P are give the scattering amplitude for arbitrary closed string states from the D3-brane. It is useful to check for massless states. We obtain perfect agreement with known results. (Myers-Garousi, Klebanov-Hashimoto, …)

Again we can compute the limit of small holes. The first result is that the tachyon pole cancels!. We get: Namely bosonic part + susy completion. We propose this to be the Hamiltonian for strings in the full D3-brane background in s–gauge (including susy part).

We can take the near horizon limit. The result is: Again, bosonic + susy completion. Should be compared with Metsaev-Tseytlin. However here we did not use AdS5xS5, only planar open strings !! Valid in 1 << Y2 << l (string units) Maldacena limit Y << 1 (decoupling limit field theory)

Comments on field theory ‘t Hooft: propagator in light cone frame: Local in τ and non local in σ. We want to flip σ ↔ τ. But we should get a local evolution in the new τ. Not clear if it is possible.

Here we identify trajectory with shape of the string Suggestive, but needs more understanding. Two loop example One loop example

Conclusions ● The sum of planar diagrams is determined by an operator P acting on closed strings. It inserts a hole in the world-sheet. ● The “(σ ↔ τ) dual” closed string Hamiltonian is: ● For open superstring on D3 branes we obtained P explicitely. From it, after taking a limit, we obtained a Hamiltonian whose bosonic part is the one for closed strings in the correct background. ● There can be corrections to H but, nevertheless, the operator P contains important information (e.g. bkgnd.)

● Two interesting side results: ● Closed expression for the scattering of generic closed string states from a D3-brane. ● Hamiltonian for a closed string in the full D3-brane background including fermionic terms (in s-gauge). Also novel form for AdS5xS5. ● In field theory we can use a “(σ ↔ τ) duality” if we get a representation local in the new τ. In that case we can define a dual H = H0 - λ P that contains the information on the planar diagrams. Less ambitious than obtaining a dual string theory.