Probabilistic Information Retrieval Part I: Survey Alexander Dekhtyar department of Computer Science University of Maryland.

Slides:



Advertisements
Similar presentations
1 Knowledge Representation Introduction KR and Logic.
Advertisements

Information Retrieval and Organisation Chapter 11 Probabilistic Information Retrieval Dell Zhang Birkbeck, University of London.
Language Models Naama Kraus (Modified by Amit Gross) Slides are based on Introduction to Information Retrieval Book by Manning, Raghavan and Schütze.
Modern information retrieval Modelling. Introduction IR systems usually adopt index terms to process queries IR systems usually adopt index terms to process.
Representations for KBS: Uncertainty & Decision Support
Basic IR: Modeling Basic IR Task: Slightly more complex:
Bayesian Network and Influence Diagram A Guide to Construction And Analysis.
The Probabilistic Model. Probabilistic Model n Objective: to capture the IR problem using a probabilistic framework; n Given a user query, there is an.
Probabilistic Information Retrieval Chris Manning, Pandu Nayak and
Probabilistic Information Retrieval
Introduction to Information Retrieval Information Retrieval and Data Mining (AT71.07) Comp. Sc. and Inf. Mgmt. Asian Institute of Technology Instructor:
CpSc 881: Information Retrieval
Lecture 11: Probabilistic Information Retrieval
Probabilistic Ranking Principle
Information Retrieval Models: Probabilistic Models
Web Search - Summer Term 2006 II. Information Retrieval (Basics Cont.)
A Probabilistic Framework for Information Integration and Retrieval on the Semantic Web by Livia Predoiu, Heiner Stuckenschmidt Institute of Computer Science,
Hinrich Schütze and Christina Lioma
ISP 433/533 Week 2 IR Models.
Evaluation.  Allan, Ballesteros, Croft, and/or Turtle Types of Evaluation Might evaluate several aspects Evaluation generally comparative –System A vs.
Incorporating Language Modeling into the Inference Network Retrieval Framework Don Metzler.
LEARNING FROM OBSERVATIONS Yılmaz KILIÇASLAN. Definition Learning takes place as the agent observes its interactions with the world and its own decision-making.
Introduction to Information Retrieval Introduction to Information Retrieval Hinrich Schütze and Christina Lioma Lecture 11: Probabilistic Information Retrieval.
1 CS 430 / INFO 430 Information Retrieval Lecture 12 Probabilistic Information Retrieval.
Probabilistic IR Models Based on probability theory Basic idea : Given a document d and a query q, Estimate the likelihood of d being relevant for the.
1 CS 430 / INFO 430 Information Retrieval Lecture 12 Probabilistic Information Retrieval.
Probabilistic Information Retrieval Part II: In Depth Alexander Dekhtyar Department of Computer Science University of Maryland.
Modern Information Retrieval Chapter 2 Modeling. Can keywords be used to represent a document or a query? keywords as query and matching as query processing.
Modeling Modern Information Retrieval
LEARNING FROM OBSERVATIONS Yılmaz KILIÇASLAN. Definition Learning takes place as the agent observes its interactions with the world and its own decision-making.
1 CS 430 / INFO 430 Information Retrieval Lecture 10 Probabilistic Information Retrieval.
Modern Information Retrieval Chapter 2 Modeling. Can keywords be used to represent a document or a query? keywords as query and matching as query processing.
CS276A Text Retrieval and Mining Lecture 10. Recap of the last lecture Improving search results Especially for high recall. E.g., searching for aircraft.
IR Models: Review Vector Model and Probabilistic.
Other IR Models Non-Overlapping Lists Proximal Nodes Structured Models Retrieval: Adhoc Filtering Browsing U s e r T a s k Classic Models boolean vector.
Probabilistic Models in IR Debapriyo Majumdar Information Retrieval – Spring 2015 Indian Statistical Institute Kolkata Using majority of the slides from.
Modeling (Chap. 2) Modern Information Retrieval Spring 2000.
1 Robot Environment Interaction Environment perception provides information about the environment’s state, and it tends to increase the robot’s knowledge.
Web Image Retrieval Re-Ranking with Relevance Model Wei-Hao Lin, Rong Jin, Alexander Hauptmann Language Technologies Institute School of Computer Science.
Bayesian statistics Probabilities for everything.
Lecture 1: Overview of IR Maya Ramanath. Who hasn’t used Google? Why did Google return these results first ? Can we improve on it? Is this a good result.
LANGUAGE MODELS FOR RELEVANCE FEEDBACK Lee Won Hee.
Latent Semantic Indexing and Probabilistic (Bayesian) Information Retrieval.
The famous “sprinkler” example (J. Pearl, Probabilistic Reasoning in Intelligent Systems, 1988)
CHAPTER 5 Probability Theory (continued) Introduction to Bayesian Networks.
Web-Mining Agents Probabilistic Information Retrieval Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Karsten Martiny (Übungen)
Set Theoretic Models 1. IR Models Non-Overlapping Lists Proximal Nodes Structured Models Retrieval: Adhoc Filtering Browsing U s e r T a s k Classic Models.
CS276A Text Information Retrieval, Mining, and Exploitation Lecture 6 22 Oct 2002.
Chapter. 3: Retrieval Evaluation 1/2/2016Dr. Almetwally Mostafa 1.
Probabilistic Model n Objective: to capture the IR problem using a probabilistic framework n Given a user query, there is an ideal answer set n Querying.
Introduction to Information Retrieval Introduction to Information Retrieval Lecture Probabilistic Information Retrieval.
Introduction to Information Retrieval Probabilistic Information Retrieval Chapter 11 1.
A Probabilistic Quantifier Fuzzification Mechanism: The Model and Its Evaluation for Information Retrieval Felix Díaz-Hemida, David E. Losada, Alberto.
Research Design
Recuperação de Informação B Modern Information Retrieval Cap. 2: Modeling Section 2.8 : Alternative Probabilistic Models September 20, 1999.
Probabilistic Information Retrieval
CS276 Information Retrieval and Web Search
Information Retrieval and Data Mining (AT71. 07) Comp. Sc. and Inf
Information Retrieval Models: Probabilistic Models
Relevance Feedback Hongning Wang
Advanced Information Retrieval
INFORMATION RETRIEVAL TECHNIQUES BY DR. ADNAN ABID
John Lafferty, Chengxiang Zhai School of Computer Science
Text Retrieval and Mining
Recuperação de Informação B
CS 430: Information Discovery
Information Retrieval and Data Mining (AT71. 07) Comp. Sc. and Inf
Recuperação de Informação B
Information Retrieval and Web Design
Generalized Diagnostics with the Non-Axiomatic Reasoning System (NARS)
Presentation transcript:

Probabilistic Information Retrieval Part I: Survey Alexander Dekhtyar department of Computer Science University of Maryland

Outline 4 Part I: Survey: –Why use probabilities ? –Where to use probabilities ? –How to use probabilities ? 4 Part II: In Depth: –Probability Ranking Principle –Boolean Independence Retrieval model

Why Use Probabilities ? Standard IR techniques 4 Empirical for most part –success measured by experimental results –few properties provable 4 This is not unexpected 4 Sometimes want properties of methods Probabilistic IR 4 Probabilistic Ranking Principle –provable “minimization of risk” 4 Probabilistic Inference –“justify” your decision 4 Nice theory

Why use probabilities ? 4 Information Retrieval deals with Uncertain Information

Query How exact is the representation of the document ? How exact is the representation of the query ? How well is query matched to data? How relevant is the result to the query ? Document collection Document Representation Query representation Query Answer TYPICAL IR PROBLEM

Why use probabilities ? 4 Information Retrieval deals with Uncertain Information 4 Probability theory seems to be the most natural way to quantify uncertainty try explaining to non-mathematician what the fuzzy measure of 0.75 means

Probabilistic Approaches to IR 4 Probability Ranking Principle (Robertson, 70ies; Maron, Kuhns, 1959) 4 Information Retrieval as Probabilistic Inference (van Rijsbergen & co, since 70ies) 4 Probabilistic Indexing (Fuhr & Co., late 80ies-90ies ) 4 Bayesian Nets in IR (Turtle, Croft, 90ies) 4 Probabilistic Logic Programming in IR (Fuhr & co, 90ies) Success : varied

Next: Probability Ranking Principle

Probability Ranking Principle 4 Collection of Documents 4 User issues a query 4 A Set of documents needs to be returned 4 Question: In what order to present documents to user ?

Probability Ranking Principle 4 Question: In what order to present documents to user ? 4 Intuitively, want the “best” document to be first, second best - second, etc… 4 Need a formal way to judge the “goodness” of documents w.r.t. queries. 4 Idea: Probability of relevance of the document w.r.t. query

Probability Ranking Principle If a reference retrieval system’s response to each request is a ranking of the documents in the collections in order of decreasing probability of usefulness to the user who submitted the request...

Probability Ranking Principle … where the probabilities are estimated as accurately a possible on the basis of whatever data made available to the system for this purpose...

Probability Ranking Principle … then the overall effectiveness of the system to its users will be the best that is obtainable on the basis of that data. W.S. Cooper

Probability Ranking Principle If a reference retrieval system’s response to each request is a ranking of the documents in the collections in order of decreasing probability of usefulness to the user who submitted the request... … where the probabilities are estimated as accurately a possible on the basis of whatever data made available to the system for this purpose... … then the overall effectiveness of the system to its users will be the best that is obtainable on the basis of that data. W.S. Cooper

Probability Ranking Principle How do we do this ? ???????????????????

Let us remember Probability Theory Let a, b be two events. Bayesian formulas

Probability Ranking Principle Let x be a document in the collection. Let R represent relevance of a document w.r.t. given (fixed) query and let NR represent non-relevance. p(x|R), p(x|NR) - probability that if a relevant (non-relevant) document is retrieved, it is x. Need to find p(R|x) - probability that a retrieved document x is relevant. p(R),p(NR) - prior probability of retrieving a (non) relevant document

Probability Ranking Principle Ranking Principle (Bayes’ Decision Rule): If p(R|x) > p(NR|x) then x is relevant, otherwise x is not relevant

Probability Ranking Principle Claim: PRP minimizes the average probability of error If we decide NR If we decide R p(error) is minimal when all p(error|x) are minimimal. Bayes’ decision rule minimizes each p(error|x).

PRP: Issues (Problems?) 4 How do we compute all those probabilities? –Cannot compute exact probabilities, have to use estimates. –Binary Independence Retrieval (BIR) (to be discussed in Part II) 4 Restrictive assumptions –“Relevance” of each document is independent of relevance of other documents. –Most applications are for Boolean model. –“Beatable” (Cooper’s counterexample, is it well- defined?).

Next: Probabilistic Indexing

Probabilistic Indexing 4 Probabilistic Retrieval: –ManyOne –Many Documents - One Query 4 Probabilistic Indexing: –OneMany –One Document - Many Queries 4 Binary Independence Indexing (BII):dual to Binary Independence Retrieval (part II) 4 Darmstadt Indexing (DIA) 4 n-Poisson Indexing

Next: Probabilistic Inference

Probabilistic Inference 4 Represent each document as a collection of sentences (formulas) in some logic. 4 Represent each query as a sentence in the same logic. 4 Treat Information Retrieval as a process of inference: document D is relevant for query Q if is high in the inference system of selected logic.

Probabilistic Inference: Notes 4 is the probability that the description of the document in the logic implies the description of the query. – is not material implication: 4 Reasoning to be done in some kind of probabilistic logic.

Probabilistic Inference: Roadmap 4 Describe your own probabilistic logic/inference system –document / query representation –inference rules 4 Given query Q compute for each document D 4 Select the “winners”

Probabilistic Inference:Pros/Cons 4 Flexible: Create-Your- Own-Logic approach 4 Possibility for provable properties for PI based IR. 4 Another look at the same problem ? 4 Vague: PI is just a broad framework not a cookbook 4 Efficiency: –Computing probabilities always hard; –Probabilistic Logics are notoriously inefficient (up to being undecidable) Pros:Cons:

Next: Bayesean Nets In IR

Bayesian Nets in IR 4 Bayesian Nets is the most popular way of doing probabilistic inference in AI. 4 What is a Bayesian Net ? 4 How to use Bayesian Nets in IR?

Bayesian Nets ab c a,b,c - propositions (events). p(c|ab) for all values for a,b,c p(a) p(b) Running Bayesian Nets: Given probability distributions for roots and conditional probabilities can compute apriori probability of any instance Fixing assumptions (e.g., b was observed) will cause recomputation of probabilities Conditional dependence For more information see J. Pearl, “Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference”, 1988, Morgan-Kaufman.

Bayesian Nets for IR: Idea Document Network Query Network Large, but Compute once for each document collection Small, compute once for every query d1 dndn d2 t1t2 tntn r1r2 r3 rkrk di -documents ti - document representations ri - “concepts” tn’ I q2 q1 cmcm c2c1 ci - query concepts qi - high-level concepts I - goal node

Bayesian Nets for IR: Roadmap 4 Construct Document Network (once !) 4 For each query –Construct best Query Network –Attach it to Document Network –Find subset of di’s which maximizes the probability value of node I (best subset). –Retrieve these di’s as the answer to query.

Bayesian Nets in IR: Pros / Cons 4 More of a cookbook solution 4 Flexible:create-your- own Document (Query) Networks 4 Relatively easy to update 4 Generalizes other Probabilistic approaches –PRP –Probabilistic Indexing 4 Best-Subset computation is NP-hard –have to use quick approximations –approximated Best Subsets may not contain best documents 4 Where Do we get the numbers ? Pros Cons

Next: Probabilistic Logic Programming in IR

Probabilistic LP in IR 4 Probabilistic Inference estimates in some probabilistic logic 4 Most probabilistic logics are hard 4 Logic Programming: possible solution –logic programming languages are restricted –but decidable 4 Logic Programs may provide flexibility (write your own IR program) 4 Fuhr & Co: Probabilistic Datalog

Probabilistic Datalog: Example 0.7 term(d1,ir). 0.8 term(d1,db). 0.5 link(d2,d1). about(D,T):- term(D,T). about(D,T):- link(D,D1), about(D1,T). Sample Program: Query/Answer: :- term(X,ir) & term(X,db). X= 0.56 d1

Probabilistic Datalog: Example 0.7 term(d1,ir). 0.8 term(d1,db). 0.5 link(d2,d1). about(D,T):- term(D,T). about(D,T):- link(D,D1), about(D1,T). Sample Program: Query/Answer: q(X):- term(X,ir). q(X):- term(X,db). :-q(X) X= 0.94 d1

Probabilistic Datalog: Example 0.7 term(d1,ir). 0.8 term(d1,db). 0.5 link(d2,d1). about(D,T):- term(D,T). about(D,T):- link(D,D1), about(D1,T). Sample Program: Query/Answer: :- about(X,db). X= 0.8 d1; X= 0.4 d2

Probabilistic Datalog: Example 0.7 term(d1,ir). 0.8 term(d1,db). 0.5 link(d2,d1). about(D,T):- term(D,T). about(D,T):- link(D,D1), about(D1,T). Sample Program: Query/Answer: :- about(X,db)& about(X,ir). X= 0.56 d1 X= 0.28 d2 # NOT 0.14 = 0.7*0.5*0.8*0.5

Probabilistic Datalog: Issues 4 Possible Worlds Semantics 4 Lots of restrictions (!) –all statements are either independent or disjoint not clear how this is distinguished syntactically –point probabilities –needs to carry a lot of information along to support reasoning because of independence assumption

Next: Conclusions (?)

Conclusions (Thoughts aloud) 4 IR deals with uncertain information in many respects 4 Would be nice to use probabilistic methods 4 Two categories of Probabilistic Approaches: –Ranking/Indexing Ranking of documents No need to compute exact probabilities Only estimates –Inference logic- and logic programming-based frameworks Bayesian Nets 4 Are these methods useful (and how)?

Next: Survey of Surveys

Probabilistic IR: Survey of Surveys 4 Fuhr (1992) Probabilistic Models In IR –BIR, PRP, Indexing, Inference, Bayesian Nets, Learning –Easier to read than most other surveys. 4 Van Rijsbergen, chapter 6 of IR book: Probabilistic Retrieval –PRP, BIR, Dependence treatment –most math –no references past 1980 (1977) 4 Crestani,Lalmas,van Rijsbergen, Campbell, (1999) Is this document relevant?... Probably”… –BIR, PRP, Indexing, Inference, Bayesian Nets, Learning –Seems to repeat Fuhr and classic works word-by-word

Probabilistic IR: Survey of Surveys General Problem with probabilistic IR surveys: 4 Only “old” material rehashed; 4 No “current developments” –e.g. logic programming efforts not surveyed 4 Especially true of the last survey