EE3190 Optical Sensing and Imaging, Fall 2004 © Timothy J. Schulz EE3190 Optical Sensing and Imaging Computing PSFs with a digital computer.

Slides:



Advertisements
Similar presentations
Start with your equation Move the # term to the other side, and leave a space Determine what HALF of the coefficient of X is Factor the left side Write.
Advertisements

AB 11 22 33 44 55 66 77 88 99 10  20  19  18  17  16  15  14  13  12  11  21  22  23  24  25  26  27  28.
Automatic Segmentation and Volume Estimation of Lung Cancer Nodules using Computed Tomography Timothy R. Tuinstra, PhD Candidate.
Maths for Computer Graphics
Презентація за розділом “Гумористичні твори”
Центр атестації педагогічних працівників 2014
Галактики і квазари.
Характеристика ІНДІЇ.
Процюк Н.В. вчитель початкових класів Боярської ЗОШ І – ІІІ ст №4
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Sampling and Aliasing Ed Angel Professor of Computer Science, Electrical and Computer Engineering,
By Maria Bocanegra. The distance around a closed curved circle. WHAT IS CIRCUMFERENCE?
CE 311 K - Introduction to Computer Methods Daene C. McKinney
Circumference.
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300.
computer
NUMBER SYSTEM Decimal System Binary System. We use two digits in this system (0,1) just like the existing system of computers.. And write the number in.
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300.
3. Image Sampling & Quantisation 3.1 Basic Concepts To create a digital image, we need to convert continuous sensed data into digital form. This involves.
Tarbiat Modares University, Faculty of Electrical & Computer Engineering, Hassan Ghassemian بسم الله الرحمن الرحيم Tarbiat Modares University Faculty of.
Designing Theory. The Three Design Basic Balances Symmetrical Balance Asymmetrical Balance Radial Balance.
EE421, Fall 1998 Michigan Technological University Timothy J. Schulz 29-Sept, 1998EE421, Lecture 61 Lecture 6 - Sample Processing Methods l Basic building.
EE3190 Optical Sensing and Imaging, Fall 2004 © Timothy J. Schulz EE3190 Optical Sensing and Imaging Introduction.
EE421, Fall 1998 Michigan Technological University Timothy J. Schulz 10-Sept., 1998EE421, Lecture 21 Lecture 2: Continuation of Sampling Butterworth Filters.
Digital Image Processing In The Name Of God Digital Image Processing Lecture2: Digital Image Fundamental M. Ghelich Oghli By: M. Ghelich Oghli
Духовні символи Голосіївського району
Geometry – Circles.  Circles are shapes made up of all points in a plane that are the same distance from a point called the center.  Look at this example.
Multiplication Squares Unit 3 Activity 2. Multiplication Squares Resource Sheet
Interference and Diffraction. Conditions for Interference Coherent Sources - The phase between waves from the multiple sources must be constant. Monochromatic.
Unit 1 MATRICES Dr. Shildneck Fall, WHAT IS A MATRIX? A Matrix is a rectangular array of numbers placed inside brackets. A Matrix is a rectangular.
Identify each solid. Name the number and shapes of the faces. Then name the number of edges and vertices Course 2, Lesson 8-1.
Bell Ringer: Draw yourself if you were a superhero.
Image from
Sampling and Aliasing Ed Angel
Area and Perimeter of Similar Figures
Section II Digital Signal Processing ES & BM.
Statistical surfaces: DEM’s
上 海 理 工 大 学 University Of Shanghai For Science And Technology
Volume of solids.
Chapter 2: Digital Image Fundamentals
Chapter 2: Digital Image Fundamentals
Проф. д-р Васил Цанов, Институт за икономически изследвания при БАН
ЗУТ ПРОЕКТ на Закон за изменение и допълнение на ЗУТ
О Б Щ И Н А С И Л И С Т Р А П р о е к т Б ю д ж е т г.
Електронни услуги на НАП
Боряна Георгиева – директор на
РАЙОНЕН СЪД - БУРГАС РАБОТНА СРЕЩА СЪС СЪДЕБНИТЕ ЗАСЕДАТЕЛИ ПРИ РАЙОНЕН СЪД – БУРГАС 21 ОКТОМВРИ 2016 г.
Сътрудничество между полицията и другите специалисти в България
Съобщение Ръководството на НУ “Христо Ботев“ – гр. Елин Пелин
НАЦИОНАЛНА АГЕНЦИЯ ЗА ПРИХОДИТЕ
ДОБРОВОЛЕН РЕЗЕРВ НА ВЪОРЪЖЕНИТЕ СИЛИ НА РЕПУБЛИКА БЪЛГАРИЯ
Съвременни софтуерни решения
ПО ПЧЕЛАРСТВО ЗА ТРИГОДИШНИЯ
от проучване на общественото мнение,
Васил Големански Ноември, 2006
Програма за развитие на селските райони
ОПЕРАТИВНА ПРОГРАМА “АДМИНИСТРАТИВЕН КАПАЦИТЕТ”
БАЛИСТИКА НА ТЯЛО ПРИ СВОБОДНО ПАДАНЕ В ЗЕМНАТА АТМОСФЕРА
МЕДИЦИНСКИ УНИВЕРСИТЕТ – ПЛЕВЕН
Стратегия за развитие на клъстера 2015
Моето наследствено призвание
Правна кантора “Джингов, Гугински, Кючуков & Величков”
Безопасност на движението
© T Madas.
Surface areas and volumes of spheres
© T Madas.
C.2.10 Sample Questions.
C.2.8 Sample Questions.
C.2.8 Sample Questions.
ACOE101: Freshman Computer Engineering Fall 2018
Presentation transcript:

EE3190 Optical Sensing and Imaging, Fall 2004 © Timothy J. Schulz EE3190 Optical Sensing and Imaging Computing PSFs with a digital computer

EE3190 Optical Sensing and Imaging© Timothy J. Schulz Electrical and Computer Engineering Fall 2004 Sampling the Pupil Function For square arrays (equal number of samples in both dimensions), select the sample spacing so that the pupil function fills up half of the array: D is the pupil diameter in meters N is the number of samples across the array When using the FFT it is good practice to select N to be even. Better yet, is to select N to be a power of 2.

EE3190 Optical Sensing and Imaging© Timothy J. Schulz Electrical and Computer Engineering Fall 2004 Sampling the Pupil Function Create a sampling grid

EE3190 Optical Sensing and Imaging© Timothy J. Schulz Electrical and Computer Engineering Fall 2004 Sampling the Pupil Function Create a sampling grid d2 = 2*D/N; u = [-N/2:1:N/2-1]*d2; [u1,u2] = meshgrid(u); u u1u2 example: d2 = 1/2; N = 6

EE3190 Optical Sensing and Imaging© Timothy J. Schulz Electrical and Computer Engineering Fall 2004 Sampling the Pupil Function Example: Square Pupil (DxD meters) Example: Circular Pupil (diameter: D meters) p = (abs(u1)<=D/2)&(abs(u2)<=D/2); r = sqrt(u1.^2 + u2.^2); p = r<=D/2;

EE3190 Optical Sensing and Imaging© Timothy J. Schulz Electrical and Computer Engineering Fall 2004 Compute the PSF Using the FFT algorithm P = fftshift(fft2(fftshift(p)); d1 = lambda*d/(N*d2); u = [-N/2:1:N/2-1]*d1; fftshift lambda is wavelength d is distance to object or image

EE3190 Optical Sensing and Imaging© Timothy J. Schulz Electrical and Computer Engineering Fall 2004 Example: Circular pupil D = 1; lambda = 1e-6; do = 10e3; N = 256; d2 = 2*D/N; u = [-N/2:1:N/2-1]*d2; [u1,u2] = meshgrid(u); r = sqrt(u1.^2+u2.^2); p = abs(r)<=D/2; figure(1); colormap(gray); subplot(2,1,1); imagesc(u,u,p); axis image; P = fftshift(fft2(fftshift(p))); d1 = lambda*do/(N*d2); x = [-N/2:1:N/2-1]*d1; subplot(2,1,2); imagesc(x,x,abs(P)); axis image;

EE3190 Optical Sensing and Imaging© Timothy J. Schulz Electrical and Computer Engineering Fall 2004 Example: Circular pupil D = 1; lambda = 1e-6; do = 10e3; N = 256; d2 = 2*D/N; u = [-N/2:1:N/2-1]*d2; [u1,u2] = meshgrid(u); r = sqrt(u1.^2+u2.^2); p = abs(r)<=D/2; figure(1); colormap(gray); subplot(2,1,1); imagesc(u,u,p); axis image; P = fftshift(fft2(fftshift(p))); d1 = lambda*do/(N*d2); x = [-N/2:1:N/2-1]*d1; subplot(2,1,2); imagesc(x,x,abs(P)); axis image; axis([ ]*10*lambda*do/D);

EE3190 Optical Sensing and Imaging© Timothy J. Schulz Electrical and Computer Engineering Fall 2004 Example: Circular pupil (defocus) D = 1; lambda = 1e-6; do = 10e3; di = 10e-2; f = 1/(1/do + 1/di); ferror = 1/(1/(do*1.06) + 1/di); N = 256; d2 = 2*D/N; u = [-N/2:1:N/2-1]*d2; [u1,u2] = meshgrid(u); r = sqrt(u1.^2+u2.^2); p = (abs(r)<=D/2).*... exp(-j*(pi/(lambda*f))*r.^2).*... exp(j*(pi/(lambda*ferror))*r.^2); figure(1); colormap(gray); subplot(2,1,1); imagesc(u,u,angle(p)); axis image; P = fftshift(fft2(fftshift(p))); d1 = lambda*do/(N*d2); x = [-N/2:1:N/2-1]*d1; subplot(2,1,2); imagesc(x,x,abs(P)); axis image; axis([ ]*8*lambda*do/D);