Applications of randomized techniques in quantum information theory Debbie Leung, Caltech & U. Waterloo roll up our sleeves & prove a few things.

Slides:



Advertisements
Similar presentations
Department of Computer Science & Engineering University of Washington
Advertisements

Henry Haselgrove School of Physical Sciences University of Queensland
Noise thresholds for optical quantum computers
Improved Simulation of Stabilizer Circuits Scott Aaronson (UC Berkeley) Joint work with Daniel Gottesman (Perimeter)
Quantum Computation and Quantum Information – Lecture 2
Quantum Computation and Quantum Information – Lecture 3
A Comparison of Two CNOT Gate Implementations in Optical Quantum Computing Adam Kleczewski March 2, 2007.
University of Queensland
Identifying universal phases for measurement-based quantum computing Stephen Bartlett in collaboration with Andrew Doherty (UQ)
Sergey Bravyi, IBM Watson Center Robert Raussendorf, Perimeter Institute Perugia July 16, 2007 Exactly solvable models of statistical physics: applications.
Mark Tame QTeQ - Quantum Technology at Queen’s Queen’s University, Belfast Fault-tolerant one-way quantum computation using minimal resources - Decoherence-free.
The Threshold for Fault-Tolerant Quantum Computation Daniel Gottesman Perimeter Institute.
Mark Tame QTeQ - Quantum Technology at Queen’s Queen’s University, Belfast Fault-tolerant One-way quantum computation using minimal resources.
GENERALIZED STABILIZERS Ted Yoder. Quantum/Classical Boundary How do we study the power of quantum computers compared to classical ones? Compelling problems.
Spin chains and channels with memory Martin Plenio (a) & Shashank Virmani (a,b) quant-ph/ , to appear prl (a)Institute for Mathematical Sciences.
Detecting Genuine Multi-qubit Entanglement with Two Local Measurement Settings Géza Tóth (MPQ) Otfried Gühne (Innsbruck) Quantum Optics II, Cozumel, Dec.
Trapped Ions and the Cluster State Paradigm of Quantum Computing Universität Ulm, 21 November 2005 Daniel F. V. JAMES Department of Physics, University.
On Quantum Walks and Iterated Quantum Games G. Abal, R. Donangelo, H. Fort Universidad de la República, Montevideo, Uruguay UFRJ, RJ, Brazil.
Debbie Leung (IQC, UW) w/ Panos Aliferis, Yingkai Ouyang, Man-Hong Yung (IBM) (IQC, UW) (UIUC) $$: NSERC, CFI, ORF, CIFAR, MITACS, QWorks, ARO, Mike Lazaridis.
Quantum Error Correction Joshua Kretchmer Gautam Wilkins Eric Zhou.
A Universal Operator Theoretic Framework for Quantum Fault Tolerance Yaakov S. Weinstein MITRE Quantum Information Science Group MITRE Quantum Error Correction.

Quantum Error Correction SOURCES: Michele Mosca Daniel Gottesman Richard Spillman Andrew Landahl.
Chien Hsing James Wu David Gottesman Andrew Landahl.
Quantum Error Correction and Fault Tolerance Daniel Gottesman Perimeter Institute.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
1 Welcome to the presentation on Computational Capabilities with Quantum Computer By Anil Kumar Javali.
Gate robustness: How much noise will ruin a quantum gate? Aram Harrow and Michael Nielsen, quant-ph/0212???
University of Queensland
Local Fault-tolerant Quantum Computation Krysta Svore Columbia University FTQC 29 August 2005 Collaborators: Barbara Terhal and David DiVincenzo, IBM quant-ph/
Review from last lecture: A Simple Quantum (3,1) Repetition Code
“Both Toffoli and CNOT need little help to do universal QC” (following a paper by the same title by Yaoyun Shi) paper.
Introduction to Quantum Information Processing Lecture 4 Michele Mosca.
Error-correcting the IBM qubit error-correcting the IBM qubit panos aliferis IBM.
Interactive Proofs For Quantum Computations Dorit Aharonov, Michael Ben-Or, Elad Eban School of Computer Science and Engineering The Hebrew University.
CSEP 590tv: Quantum Computing
Dogma and Heresy in Quantum Computing DoRon Motter February 18, 2002.
Fault-Tolerant Quantum Computation in Multi-Qubit Block Codes Todd A. Brun University of Southern California QEC 2014, Zurich, Switzerland With Ching-Yi.
A Fault-tolerant Architecture for Quantum Hamiltonian Simulation Guoming Wang Oleg Khainovski.
Quantum Computation and Quantum Information – Lecture 2 Part 1 of CS406 – Research Directions in Computing Dr. Rajagopal Nagarajan Assistant: Nick Papanikolaou.
Requirements and Desiderata for Fault-Tolerant Quantum Computing Daniel Gottesman Perimeter Institute for Theoretical Physics Beyond the DiVincenzo Criteria.
Quantum Error Correction Jian-Wei Pan Lecture Note 9.
Alice and Bob’s Excellent Adventure
Quantum Error Correction Daniel Gottesman Perimeter Institute.
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 16 (2011)
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear.
Quantum Homomorphic Encryption
 Quantum State Tomography  Finite Dimensional  Infinite Dimensional (Homodyne)  Quantum Process Tomography (SQPT)  Application to a CNOT gate  Related.
Michael A. Nielsen Fault-tolerant quantum computation with cluster states School of Physical Sciences Chris Dawson (UQ) Henry Haselgrove (UQ) The University.
1 hardware of quantum computer 1. quantum registers 2. quantum gates.
You Did Not Just Read This or did you?. Quantum Computing Dave Bacon Department of Computer Science & Engineering University of Washington Lecture 3:
Coherent Communication of Classical Messages Aram Harrow (MIT) quant-ph/
September 12, 2014 Martin Suchara Andrew Cross Jay Gambetta Supported by ARO W911NF S IMULATING AND C ORRECTING Q UBIT L EAKAGE.
1 Modeling Quantum Information Systems Paul E. Black National Institute of Standards and Technology Andrew W. Lane University of Kentucky.
Quantum Computing and Quantum Programming Language
Quantum Computing Reversibility & Quantum Computing.
A simple nearest-neighbour two-body Hamiltonian system for which the ground state is a universal resource for quantum computation Stephen Bartlett Terry.
Coherent Classical Communication Aram Harrow, MIT Quantum Computing Graduate Research Fellow Objective Objective ApproachStatus Determine.
Coherent Communication of Classical Messages Aram Harrow (MIT) quant-ph/
Suggestion for Optical Implementation of Hadamard Gate Amir Feizpour Physics Department Sharif University of Technology.
Quantum Teleportation What does the future hold?.
Simulation and Design of Stabilizer Quantum Circuits Scott Aaronson and Boriska Toth CS252 Project December 10, X X +Z Z +ZI +IX
Introduction to Quantum Computing Lecture 1 of 2
Linear Quantum Error Correction
Optical qubits
Quantum Computation and Information Chap 1 Intro and Overview: p 28-58
Improving Quantum Circuit Dependability
Quantum Computation – towards quantum circuits and algorithms
Linear Optical Quantum Computing
in collaboration with Andrew Doherty (UQ)
Presentation transcript:

Applications of randomized techniques in quantum information theory Debbie Leung, Caltech & U. Waterloo roll up our sleeves & prove a few things

Unifying & Simplifying Measurement-based Quantum Computation Schemes Debbie Leung, Caltech & U. Waterloo Light, 95% math free may contain traces of physics

Unifying & Simplifying Measurement-based Quantum Computation Schemes Debbie Leung, Caltech & U. Waterloo quant-ph/ , Joint work with Panos Aliferis, Andrew Childs, & Michael Nielsen Hashing ideas from Charles Bennett, Hans Briegel, Dan Browne, Isaac Chuang, Daniel Gottesman, Robert Raussendorf, Xinlan Zhou

Universal QC schemes using only simple measurements:

1WQC: Universal entangled initial state 1-qubit measurements Universal QC schemes using only simple measurements: 1) One-way Quantum Computer “1WQC” (Raussendorf & Briegel 00) : |+ i = |0 i +|1 i, : controlled-Z Cluster state: Can be easily prepared by (1) |+ i + controlled-Z, or ZZ, or (2) measurements of stabilizers e.g. X Z Z Z Z

TQC: Any initial state (e.g. j 00  0 i ) 1&2-qubit measurements j 0 i ⋮ j 0 i u B ==== B ==== B ==== u B ==== u B ==== Universal QC schemes using only simple measurements: 2) Teleportation-based Quantum Computation “TQC” (Nielsen 01, L 01,03) Basic idea in each box: Bell XcZdUXcZdU  U c,d

1WQC: Universal entangled initial state 1-qubit measurements TQC: Any initial state (e.g. j 00  0 i ) 1&2-qubit measurements j 0 i ⋮ j 0 i u B ==== B ==== B ==== u B ==== u B ==== Universal QC schemes using only simple measurements: 1) One-way Quantum Computer “1WQC” (Raussendorf & Briegel 00) 2) Teleportation-based Quantum Computation “TQC” (Nielsen 01, L 01,03)

Rest of talk: 0. Define simulation 1. Review 1-bit-teleportation Qn: are 1WQC & TQC related & can they be simplified? Here: derive simplified versions of both using “1-bit-teleportation” (Zhou, L, Chuang 00) (simplified version of Gottesman & Chuang 99) milk strawberry strawberry ice-cream & strawberry smoothy freeze & mix or mix & freeze 2. Derive intermediate simulation circuits (using much more than measurements) for a universal set of gates 3. Derive measurement-only schemes Ans: 1WQC = repeated use of the teleportation idea Then a big simplification suggests itself.

Standard model for universal quantum computation : UU UU 0/1 UU U5U5 UnUn UU  0  :  0  : : time initial state Computation: gates from a universal gate set measure DiVincenzo 95 Wanted: a notion of “composable” elementwise-simulation

Simulation of components up to known “leftist” Paulis   (input to U),  X a Z b (arbitrary known Pauli operator) (c,d) only depends on (a,b,k)  k XaZbXaZb U  XcZdXcZd (a,b) U  U  Intended evolution Simulation U simulates itself   ,a,b UX a Z b  = X c Z d U  U  Clifford group e.g. e.g. U X,Z: Pauli operators, a,b,c,d {0,1} U simulates I   ,a,b UX a Z b  = X c Z d   U  Pauli group e.g.

UU UU 0/1 UU U5U5 UnUn  0  :  0  : Composing simulations to simulate any circuit : Simulation of circuit up to known “leftist” Paulis

UU UU 0/1 U5U5 UnUn  0  :  0  Composing simulations to simulate any circuit : XaZbXaZb XaZbXaZb : UU Simulation of circuit up to known “leftist” Paulis XaZbXaZb UU UU State = (X a  )  (X a  )  

UU UU 0/1 U5U5 UnUn  0  :  0  Composing simulations to simulate any circuit : XaZbXaZb : UU XaZbXaZb XaZbXaZb Simulation of circuit up to known “leftist” Paulis State = (X a  )  (X a  )  

0/1 U5U5 UnUn  0  :  0  Composing simulations to simulate any circuit : XaZbXaZb UU UU XaZbXaZb : UU XaZbXaZb Simulation of circuit up to known “leftist” Paulis State = (X a  )  (X a  )   → X c Z d U 2 U 1     

UU UU 0/1 UU U5U5 UnUn  0  :  0  Composing simulations to simulate any circuit : XaZbXaZb : XcZdXcZd XcZdXcZd Simulation of circuit up to known “leftist” Paulis → X c Z d U 2 U 1      → X e Z f U 3 U 2 U 1      State = (X a  )  (X a  )  

UU UU 0/1 UU U5U5 UnUn  0  :  0  Composing simulations to simulate any circuit : : XaZbXaZb XaZbXaZb XaZbXaZb XaZbXaZb Simulation of circuit up to known “leftist” Paulis

UU UU 0/1 UU U5U5 UnUn  0  :  0  Composing simulations to simulate any circuit : : XaZbXaZb XaZbXaZb XaZbXaZb XaZbXaZb Propagate errors without affecting the computation. Final measurement outcomes are flipped in a known (harmless) way. Simulation of circuit up to known “leftist” Paulis

1-bit teleportation

Z-Telepo (ZT) H c |0 i |i|i Zc|iZc|i H d c dc Teleportation without correction CNOT: Recall:Pauli’s: I, X, Z Hadamard: H H d X-rtation (XT) |0 i |i|i Xd|iXd|i NB. All simulate “I”.

Simulating a universal set of gates: Z & X-rotations (1-qubit gates) & controlled-Z with mixed resources.

Goal: perform Z rotation e iZ

H c |0 i |i|i Zc|iZc|i Goal: perform Z rotation e iZ Z-Telep (ZT)

H c |0 i |i|i Zc|iZc|i Goal: perform Z rotation e iZ c Z c e i(-1) a Z X a Z b | i XaZb|iXaZb|i H |0 i e i(-1) a Z = X a Z c+b e iZ | i Z-Telep (ZT) Input state = e i(-1) a Z X a Z b | i Xa eiZXa eiZ

c Z-Telep (ZT) H c |0 i |i|i Zc|iZc|i XaZb|iXaZb|i H e i(-1) a Z Simulating a Z rotation e iZ X a Z c+b e iZ | i

c Z-Telep (ZT) H H c d |0 i |i|i Zc|iZc|i X-Telep (XT) |0 i |i|i Xd|iXd|i X a Z c+b e iZ | i XaZb|iXaZb|i X a+d Z b e iX | i Simulating a Z rotation e iZ H |0 i e i(-1) a Z Simulating an X rotation e iX H d |0 i XaZb|iXaZb|i e i(-1) b X

H d X-Telep (XT) |0 i |i|i Xd|iXd|i = C-Z: H d1 |0 i H d2 |0 i X a1 Z b1 X a2 Z b2 | i Simulating a C-Z X a1+d1 Z b1+a2+d2 X a2+d2 Z b2+a1+d1 C-Z | i

From simulation with mixed resources to TQC -- QC by 1&2-qubit projective measurements only

c X a Z c+b e iZ | i XaZb|iXaZb|i Simulating a Z rotation e iZ H |0 i e i(-1) a Z

c X a+a2 Z c+b e iZ | i XaZb|iXaZb|i Simulating a Z rotation e iZ He i(-1) a Z An incomplete 2-qubit measurement, followed by a complete measurement on the 1st qubit. “X a2” |0 up to X a2 j HU V Z V†V† j U † XU V † ZV U † ZU k V†ZkVV†ZkV = A little fact: O = measurement of operator O

c X a+a2 Z c+b e iZ | i XaZb|iXaZb|i Simulating a Z rotation e iZ “X a2”

c X a+a2 Z c+b e iZ | i XaZb|iXaZb|i Simulating a Z rotation e iZ He i(-1) a Z “X a2” X a+d Z b+b2 e iX | i Simulating an X rotation e iX d XaZb|iXaZb|i e i(-1) b X “Z b2”

c X a+a2 Z c+b e iZ | i XaZb|iXaZb|i Simulating a Z rotation e iZ He i(-1) a Z “X a2” X a+d Z b+b2 e iX | i Simulating an X rotation e iX d XaZb|iXaZb|i e i(-1) b X “Z b2” H d1 |0 i H d2 |0 i X a1 Z b1 X a2 Z b2 | i Simulating a C-Z X a1’ Z b1’  X a2’ Z b2’ C-Z | i

c X a+a2 Z c+b e iZ | i XaZb|iXaZb|i Simulating a Z rotation e iZ He i(-1) a Z “X a2” X a+d Z b+b2 e iX | i Simulating an X rotation e iX d XaZb|iXaZb|i e i(-1) b X “Z b2” d1 d2 X a1 Z b1 X a2 Z b2 | i Simulating a C-Z H |0 i H X a1’ Z b1’  X a2’ Z b2’ C-Z | i

c X a+a2 Z c+b e iZ | i XaZb|iXaZb|i Simulating a Z rotation e iZ He i(-1) a Z “X a2” X a+d Z b+b2 e iX | i Simulating an X rotation e iX d XaZb|iXaZb|i e i(-1) b X “Z b2” d1 d2 X a1 Z b1 X a2 Z b2 | i Simulating a C-Z X a1’ Z b1’  X a2’ Z b2’ C-Z | i Complete recipe for TQC based on 1-bit teleportation

Aside: universality of 2-qubit meas is immediate! Bell c,d 2-qubit gate to be teleported 4-qubit state to be prepared d1 d2 Previous TQC with full teleportation: H |0 i H Simplified TQC with 1-bit teleportation: 2-qubit state to be prepared j HH Z j Z ZZ Z X k ZkZk =

With slight improvements (see quant-ph/ ): n-qubitm C-Z up to (m+1)n 1-qubit gates circuit Sufficient 2m 2-qubit meas 2m+n 1-qubit meas in TQC

Deriving 1WQC-like schemes using gate simulations obtained from 1-bit teleportation 1WQC: Universal entangled initial state Feedforward 1-qubit measurement

General circuit:... Alternating: (1) 1-qubit gates (2) nearest neighbor optional C-Z

General circuit:... RzRz RxRx RzRz RzRz RxRx RzRz RzRz RxRx RzRz RzRz RxRx RzRz RzRz RxRx RzRz RzRz RxRx RzRz RzRz RzRz RzRz RzRz Alternating: (1) 1-qubit gates (2) nearest neighbor optional C-Z Z rotations + optional C-Z – X rotations – Z rotations + optional C-Z – X rotations –.... simulate these 2 things Euler-angle decomposition

X a+d Z b e iX | i Simulating an X rotation e iX H d |0 i XaZb|iXaZb|i e i(-1) b X Adding an optional C-Z right before Z rotations c1 H |0 i c2 H |0 i e i(-1) a1 Z e i(-1) a2 Z X a1 Z b1 X a2 Z b2 | i X a1 Z b1+a2 k X a2 Z b2 +a1 k C-Z k | i X a1 Z c1+b1+a2 k X a2 Z c2+b2+a2 k e iZ e iZ C-Z k | i Will derive a method for optional C-Z later : the ability to choose to simulate I or C-Z

|i|i optional c1 c2 H |0 i H e i(-1) a1 Z e i(-1) a2 Z H d1 |0 i e i(-1) b X H d2 |0 i e i(-1) b X c1’ c2’ H |0 i H e i(-1) a1 Z e i(-1) a2 Z H d1’ |0 i e i(-1) b X H d2’ |0 i e i(-1) b X C-Z+Z rotations –-- X rotations –-- C-Z+Z rotations –-- X rotations... Chaining up

optional |i|i c1 c2 H |0 i H e i(-1) a1 Z e i(-1) a2 Z H d1 |0 i e i(-1) b X H d2 |0 i e i(-1) b X c1’ c2’ H |0 i H e i(-1) a1 Z e i(-1) a2 Z H d1’ |0 i e i(-1) b X H d2’ |0 i e i(-1) b X Use H|0 i = |+ i, HH=I H H H H H H H H H H H H H H H H = HH C-Z+Z rotations –-- X rotations –-- C-Z+Z rotations –-- X rotations... Chaining up

|i|i c1 c2 H |+ i H e i(-1) a1 Z e i(-1) a2 Z c1 c2 H |+ i H e i(-1) a1 Z e i(-1) a2 Z d1 |+ i e i(-1) b X d2 |+ i e i(-1) b X H H optional d1 |+ i e i(-1) b X d2 |+ i e i(-1) b X H H C-Z+Z rotations –-- X rotations –-- C-Z+Z rotations –-- X rotations... Chaining up = |+ i Let, Then, initial state = |i|i

Circuit dependent initial state: 3 qubits, 8 cycles of C-Z + 1-qubit rotations C-Z Z-rotations X-rotations

H d1 |0 i H d2 |0 i X a1 Z b1 X a2 Z b2 | i Recall : simulating a C-Z Simulating an optional C-Z X a1’ Z b1’  X a2’ Z b2’ C-Z | i

H d1 |0 i H d2 |0 i Recall : simulating a C-Z H d1 |0 i H d2 |0 i 1. Redrawing the 2nd input to the bottom: Simulating an optional C-Z

2. Use symmetry: H d1 |0 i H d2 |0 i 1. Redrawing the 2nd input to the bottom: Just measures the parity of the 2 qubits It is equal to Simulating an optional C-Z j XjXj j

2. Use symmetry: H |0 i H d2 d1 Simulating an optional C-Z Just measures the parity of the 2 qubits It is equal to j XjXj j

H |0 i H d2 d1 Simulating an optional C-Z

H |0 i H d2 d1 3. Use H = = HH Simulating an optional C-Z

H |0 i H d2 d1 H H Simulating an optional C-Z 3. Use H = = HH

H |0 i H H H H H = Simulating an optional C-Z H |0 i H d2 d1 H H

3. Use H |0 i H H H H H = Simulating an optional C-Z H |0 i H d2 d1

3. Use H|0 i =|+ i, |+ i d2 d1 “Remote C-Z” : Cousin of the remote CNOT by Gottesman98 H |0 i H d2 d1 Simulating an optional C-Z

|+ i If one measures along {|0 i, |1 i }, the C-Zs labeled by ①② only acts like Z d1  Z d2 – simulating identity instead! d1 d2 ①②①② Simulating an optional C-Z |+ i d2 d1 “Remote C-Z” : Cousin of the remote CNOT by Gottesman98

Simulating an optional C-Z, summary: |+ i d2 d1 |+ i d1 d2 simulates To do the C-Z:To skip the C-Z:

Simulating an optional C-Z, summary: |+ i d2 d1 |+ i d1 d2 simulates To do the C-Z:To skip the C-Z: also simulates Do:Skip: |+ i Y Z up to Z-rotations

Universal Initial state 3 qubits, 8 cycles

Starting from the cluster state measure in Z basis

Universal Initial state 3 qubits, 8 cycles

Starting from the cluster state measure in Z basis

Other universal initial state with other methods for optional C-Z

Summary: Unified derivations, using 1-bit teleportation, for 1WQC & TQC + simplifications Details in quant-ph/ , Related results by Perdrix & Jorrand, Verstraete & Cirac but perhaps you don’t need to see them, you only need to remember what is a simulation (milk), what 1-bit teleportation does (strawberry), and the rest (mix/freeze) comes naturally.

Summary: 1-bit teleportation has been used for systematic derivation of simplified constructions of fault tolerant gates. We have seen a similar use in deriving measurement-based QC. It leads to the remote C-Z/CNOT and programmable gate-array. Does it has a special role in quantum information theory?

Open issues  When it is already so simple ? Further optimizations?

Open issues  When it is already so simple ? Practically, the most interesting problems are likely to involve a mixture of resources, not just measurements. Measurement-based QC is most important as a conceptual tool. “Strawberry milkshake” taste much better with banana in it !

Open issues  mixture of resources, not just measurements. Running 1WQC in linear optics Nielsen 04, Drowne & Rudolph 04 Problem in linear optics: - C-Z difficult - C-Z probabilistically by teleportation trick Knill, Laflamme, Milburn01 Idea: Applying faulty C-Z to the data is expensive & failures are painful to repair. Instead, apply C-Z to build a cluster/graph state followed by 1-qubit measurements. Faulty C-Zs percolates the cluster state, but cheap to repair. Qn: optimize construction. Tradeoff between different methods to protect against percolations, e.g. good expensive C-Z vs redundant coding Qn: threshold under linear optics model? (1WQC: Raussendorf PhD thesis, Nielsen & Dawson 04)

Open issues (what else to add to pure strawberry milkshake?)  no threshold without fresh ancillas and interaction in 1WQC What are reasonable models for such resources ? What are reasonable models for the noise? Again, will be more experimentally motivated. e.g. Photons? Trapped ions? Quantum dots?