Outline Chapter 6 Electricity and Magnetism 6-10. Ohm's Law 6-11. Electric Power 6-12. Magnets 6-13. Magnetic Field 6-14. Oersted's Experiment 6-15. Electromagnets.

Slides:



Advertisements
Similar presentations
Electricity.
Advertisements

5 pt 5 pt 5 pt 5 pt 5 pt 10 pt 10 pt 10 pt 10 pt 10 pt 15 pt 15 pt
DATE: TOPIC: ELECTRICITY AND MAGNETISM OBJECTIVE: To establish how electric charges and magnets work.
Electricity and Magnetism
Electricity and Magnetism
Chapter 5 Electrostatics
Static Electricity. Positive and Negative Charge Same charges repel.
Great Ideas in Science: Lecture 4 Electricity and Magnetism Professor Robert Hazen UNIV 301 Great Idea: Electricity and magnetism are two different aspects.
Ch 8 Magnetism.
Magnetism and Electromagnetic Induction
Electricity and Circuits
Foundations of Physics
Electricity and Magnetism. Electricity zis a form of energy caused by moving electrons called electric current. zThe path through which the electricity.
Electrical Fundamentals
ISNS Phenomena of Nature
Outline of Electricity and Magnetism 11. Electric Power 12. Magnets 13. Magnetic Field 14. Oersted's Experiment 15. Electromagnets 16. Magnetic Force on.
Electricity and Magnetism Chapters 11 and 12 Central High School Physical Science.
Magnetic Flux and Faraday’s Law of Induction
Electricity and Magnetism
Magnetism Physical Science. What is a magnet?  2000 years ago the Greeks discovered a mineral that attracted things made of iron.  They named this mineral.
P5 – Electric Circuits. Static Electricity When two objects are rubbed together and become charged, electrons are transferred from one object to the other.
21.1 Magnets and Magnetic Fields
1. ____The polarity of an electromagnet can be determined using the second right-hand rule. 2. ____Current passing through a conductor is increased from.
Electromagnetic Force
Magnetism and Electromagnetism. The basics of magnetism Named for Magnesia, an island in the Aegean Sea >2000 years ago Lodestones or magnetite, Fe 2.
Electricity & Magnetism Static, Currents, & Electro Magnets Motors & Generators.
Chapter 22 Magnetism and Its Uses.
Electricity and Magnetism Electric Power Magnets Magnetic Field Electromagnets Electromagnetic Induction Transformers Positive and Negative Charge Conductors.
Electricity and Magnetism 1Static electricity 2Electric Circuits and Electric Current 3 Ohm’s Law and Resistance 4 Series and Parallel Circuits 5Electric.
Electricity. Electric Charge Rules: –More protons than electrons: + charge –More electrons than protons: - charge –Like charges repel; opposite charges.
Magnetism Chapter 24.
Lecture 9 Electricity Chapter 5.1  5.11 Outline Electric Charge Coulomb’s Law Conductors and Insulators Superconductivity Ohm’s Law.
Magnets and Magnetism.
Phys141 Principles of Physical Science Chapter 8 Electricity and Magnetism Instructor: Li Ma Office: NBC 126 Phone: (713)
Magnetism and its applications.
Electric Currents and Magnetic Fields. History Lodestones were discovered 2000 years ago and were magnetic. They were named after Magnesia which is a.
Chapter 22 Magnetism and its uses Characteristics of Magnets Greeks experimented more than 2000 years ago with a mineral that pulled iron objects.
Electricity & Magnetism Static, Currents, Circuits Magnetic Fields & Electro Magnets Motors & Generators.
Magnetism. All of us are familiar with magnets. In a magnet we have magnetic poles – the north and the south pole. All of us are familiar with magnets.
Electrical Production of Sound 1Electric Circuits 2Electric Current 3Resistance 4Voltage 5Ohm’s Law 6Series and Parallel Circuits 7Electric Energy and.
Electromagnetism. What is a Magnet? The earliest magnets were found naturally in the mineral magnetite which is abundant the rock-type lodestone. These.
Magnetism Unit 12. Magnets Magnet – a material in which the spinning electrons of its atom are aligned with one another Magnet – a material in which the.
Physical Science Chapter 18
Electricity & Magnetism Chapter 8. Student Learning Objectives Recall properties of charge Characterize static electricity Differentiate between series.
Energy Transformations Electricity and Magnetism
Magnets and Electromagnetism Chapter Outline 1.Magnets, magnetic poles, and magnetic force. 2.Magnetic effects of electric current. 3.Magnetic effects.
Pearson Prentice Hall Physical Science: Concepts in Action Chapter 21 Magnetism.
Ch 21-Magnetism Magnetism a property of matter in which there is a force of attraction or repulsion between like and unlike poles.
Electricity & Magnetism Static, Currents, Circuits Magnetic Fields & Electro Magnets Motors & Generators.
Magnets and Electromagnetism Chapter Outline 1.Magnets, magnetic poles, and magnetic force. 2.Magnetic effects of electric current. 3.Magnetic effects.
Unit 8 Electricity and Magnetism. Page 9: Essential Question 1 What causes charged objects to push and pull on each other?
Unit 3 Electricity & Magnetism Magnetic Field, Currents & Plasmas Physics 5h Students know changing magnetic fields produce electric fields, thereby inducing.
Warm Up – copy the objective Have you ever felt a shock when you touched someone or something? Describe your experience.
CHAPTER 17: ELECTRICITY ELECTRIC CHARGE AND FORCE CHAPTER 17: ELECTRICITY.
Next page. The topics in this unit are: 1 – Static electricity 2 – Repulsion and attraction 3 – Electric circuits 4 – Circuit symbols 5 – Currents 6 –
WELCOME BACK! Agenda: 1. #motivationalmonday 2. Magnet Notes Homework: None Wednesday, March 16, 2016 Objective: Magnet Notes; I will discover magnetism.
1 Chapter 20 Electricity Chapter 21 Magnetism Prentice Hall 2006.
 An electrical charge is an electric property of matter. An object can have a negative, a positive, or not charge.  Like electrical charges repel each.
Magnetism. Magnets  Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south  Like poles repel each.
Electricity & Magnetism Static, Currents, Circuits Magnetic Fields & Electro Magnets Motors & Generators.
Outline 1 Electric Circuits and Electric Current 2 Ohm’s Law and Resistance 3 Series and Parallel Circuits 4 Electric Energy and Power 5 Alternating currents.
GENERATORS AND MOTORS Topic 6. Electromagnets When a soft iron core is inserted into a coil of wire and a current is passed through the wire, an even.
Electrical principles and technologies
Chapter 21: Magnetism Section 21.1 Magnets and Magnetic Fields
Electricity & Magnetism
MAGNETISM ELECTROMAGNETISM.
Electricity & Magnetism
Presentation transcript:

Outline Chapter 6 Electricity and Magnetism Ohm's Law Electric Power Magnets Magnetic Field Oersted's Experiment Electromagnets Magnetic Force on a Current Electric Motors Electromagnetic Induction Transformers 6-1. Positive and Negative Charge 6-2. What is Charge? 6-3. Coulomb’s Law 6-4. Force on an Uncharged Object 6-5. Matter in Bulk 6-6. Conductors and Insulators 6-7. Superconductivity 6-8. The Ampere 6-9. Potential Difference

6-1. Positive and Negative Charge Opposites attract-Same charges repel Let’s try it!

6-1. Positive and Negative Charge Electrons are stripped from one component and transferred to the other to cause both to be oppositely charged.

Fig. 6.2 Ben Franklin discovered electric charge.

6-2. What is Charge? Atoms are composed of protons (+), electrons (-) and neutrons. The nucleus contains the protons and neutrons and the electrons surround the nucleus.

6-2. What is Charge? Protons are much larger than electrons but have an equal and opposite charge. The coulomb (C) is the unit of electric charge. The basic quantity of electric charge (e) is 1.6 x C.

6-3. Coulomb’s Law Q 1 Q 2 F = K R 2 Charles Coulomb ( )

6-4. Force on an Uncharged Particle Initially the paper is uncharged, but the comb polarizes the charges in the paper.

6-5. Matter in Bulk Coulomb's law resembles the law of gravity; however, gravitational forces are always attractive, whereas electric forces may be attractive or repulsive. Coulomb’s Law Q 1 Q 2 F = K R 2 Law of Gravity M 1 M 2 F = G R 2 Gravitational forces dominate on a cosmic scale; electric forces dominate on an atomic scale.

6-6. Conductors and Insulators A conductor is a substance through which electric charge flows readily. An insulator is a substance that strongly resists the flow of electric charge. Semiconductors are substances whose electrical conductivity is between that of conductors and insulators.

Semiconductors Transistors are switches that conduct electricity only when a second source of electricity is energized. A B C What a Transistor looks like. A current will not flow from A to B unless C is energized. John Bardeen Nobel Prizes in 1956 and 1972 for developing the transistor and superconductivity.

Fig Enlargement of 5 mm square computer chip.

6-7. Superconductivity Superconductivity refers to the loss of all electrical resistance by certain materials at very low temperatures. Substances that are superconducting at 150K are now known which is warmer than liquid nitrogen (77K). Maglev Train in Japan

6-8. The Ampere The Ampere is a measure of how much electrical current is flowing and is measured in units of amps. Q I = ---- t

6-8. The Ampere The current varies depending on the force behind the current and the resistance to flow.

6-9. Potential Difference Potential difference, or voltage, is the electrical potential energy per coulomb of charge. J V = ---- C Alessandro Volta ( )

Fig

6-10. Ohm’s Law ResistanceResistance is a measure of opposition to the flow of charge and is measured in ohms (  ) V I = ---- R Georg Ohm ( ) André Marie Ampére ( )

Fig. 6.24

Fig. 6.22

6-11. Electric Power The power of an electric current is the rate at which it does work and is equal to the product of the current and the voltage of a circuit: P= IV The unit of electric power is the watt.The commercial unit of electric energy is the kilowatthour (kWh).

6-11. Electric Power Typical Power Ratings Appliance Power (W) Stove12,000 Clothes Dryer 5,000 Heater 2,000 Dishwasher 1,600 Photocopier 1,400 Iron 1,000 Vacuum Cleaner 750 Coffee Maker 700 Refrigerator 400 Portable Sander 200 Fan 150 Personal Computer 150 TV Receiver 120 Fax Transmitter/Receiver 65 Charger for Electric Toothbrush 1

6-12. Magnets Every magnet has a north pole and a south pole.

6-13. Magnet Field How to make a magnet: Heat in magnetic field. Magnetic force lines.

6-14. Oersted’s Experiment Hans Christian Oersted discovered in 1820 that an electric current near a compass causes the compass needle to be deflected. Oersted's experiment showed that every electric current has a magnetic field surrounding it. Hans Christian Oersted ( )

6-14. Oersted’s Experiment According to the right-hand rule, the electron current in a wire and the magnetic field it generates are perpendicular to each other.

6-14. Oersted’s Experiment All magnetic fields originate from moving electric charges. A magnetic field appears only when relative motion is present between an electric charge and an observer. Electric and magnetic fields are different aspects of a single electromagnetic field.

6-15. Electromagnets An electromagnet consists of an iron core placed inside a wire coil. The magnetic field strength of a wire coil carrying an electric current increases in direct proportion to the number of turns of the coil.

6-15. Electromagnets An electromagnet can be used to move large quantities of metal. When the current is on the magnet will pick up the metal. When you want to drop it you turn off the power and the electromagnet is disabled and the metal drops.

6-16. Magnetic Force on a Current A magnetic field exerts a sideways push on an electric current with the maximum push occurring when the current is perpendicular to the magnetic field. Currents exert magnetic forces on each other. The forces are attractive when parallel currents are in the same direction and are repulsive when the parallel currents are in opposite directions.

Fig The experimental Japanese Maglev train uses magnetic forces for both support and propulsion.

How a TV works.

6-17. Electric Motors An electric motor uses the sideways push of a magnetic field to turn a current-carrying wire loop. Electric motors use a commutator to change the direction of the current in the loop. Alternating current electric motors do not use commutators.

6-18. Electromagnetic Induction The effect of producing an induced current is known as electromagnetic induction. The direction of the induced current can be reversed by reversing the motion of the wire or reversing the field direction. The strength of the current depends on the strength of the magnetic field and the speed of the wire's motion.

Fig The stationary windings of a large electric motor. magnetic forces underlie the operation of such motors. Michael Faraday ( ) built the first electric motor and discovered magnetic induction.

Fig Sharks navigate with the help of the earth’s magnetic field. They detect the field using electromagnetic induction.

Alternating and Direct Current Alternating current (ac) is current that flows in a back-and- forth manner; household current changes direction 120 times each second (60 Hz). Direct current (dc) flows in one direction. The ac generator (or alternator) produces an ac current and can be modified to produce dc current by 1. Use of a commutator. 2. Use of a rectifier which permits current to pass through it in only one direction.

6-19. Transformers A transformer is a device composed of two unconnected coils, usually wrapped around a soft iron core, that can increase or decrease the voltage of ac current.

6-19. Transformers A transformer is used to step the voltage down and the current up (P=IV) so that we can use it. Low power is desired for the transport of electricity long distances to avoid loss of energy to heat loss. A moving coil activated by voice vibrations is used as a microphone. The coil induces a current in the magnet that can be amplified or recorded.

6-19. Transformers A taperecorder records signals from a microphone on magnetic tape which then can be run across a magnet and played back.