MOLDPOS – Initial Meeting, Chisinau, 10-05-10 HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA DFHRS (Digital FEM Height Reference Surface)

Slides:



Advertisements
Similar presentations
Precise Transformation of Classical Networks to ITRF by COPAG and Precise Vertical Reference Surface Representation by DFHRS Concepts and Realisation of.
Advertisements

A Comparison of topographic effect by Newton’s integral and high degree spherical harmonic expansion – Preliminary Results YM Wang, S. Holmes, J Saleh,
Gravity 1. Topics Gravity and gravitational potential Gravity and shape of the Earth Isostasy Gravity anomalies/corrections Gravity modeling Gravity and.
Development of geodetic databases for real time MOLDPOS service Technical University of Moldova Agency for Land Relations and Cadastre (ARLC) As. Prof.
Effect of Surface Loading on Regional Reference Frame Realization Hans-Peter Plag Nevada Bureau of Mines and Geology and Seismological Laboratory University.
GRACE GRAVITY FIELD SOLUTIONS USING THE DIFFERENTIAL GRAVIMETRY APPROACH M. Weigelt, W. Keller.
United Nations Workshop on GNSS Session 2 - Jäger / RTCM Messages Chisinau, 17-May-2010 THE NEW RTCM 3.1 TRANSFORMATION MESSAGES Declaration, Generation.
2-3 November 2009NASA Sea Level Workshop1 The Terrestrial Reference Frame and its Impact on Sea Level Change Studies GPS VLBI John Ries Center for Space.
National report of LITHUANIA THE 4th BALTIC SURVEYORS FORUM, 2013, Ventspils, LATVIA Eimuntas Parseliunas Geodetic Institute of Vilnius Technical University.
Satellite geodesy. Basic concepts. I1.1a = geocentric latitude φ = geodetic latitude r = radial distance, h = ellipsoidal height a = semi-major axis, b.
Satellite geophysics. Basic concepts. I1.1a = geocentric latitude φ = geodetic latitude r = radial distance, h = ellipsoidal height a = semi-major axis,
An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.
The Four Candidate Earth Explorer Core Missions Consultative Workshop October 1999, Granada, Spain, Revised by CCT GOCE S 59 Performance.
CHAMP Satellite Gravity Field Determination Satellite geodesy Eva Howe January
Geographic Datums Y X Z The National Imagery and Mapping Agency (NIMA) and the Defense Mapping School Reviewed by:____________ Date:_________ Objective:
RESEARCH POSTER PRESENTATION DESIGN © This research is based on the estimation of the spherical harmonic geopotential.
The Four Candidate Earth Explorer Core Missions Consultative Workshop October 1999, Granada, Spain, Revised by CCT GOCE S 1 Gravity Field.
Dynamic Planet 2005 Cairns, Australia August 2005
Geodetic Institute, University of Karlsruhe
Climate and Global Change Notes 6-1 Satellite Fundamentals Types of Orbit Lower Earth Orbits (LEO) Polar Orbits Medium Earth Orbits (MEO) Highly Elliptical.
Use of G99SSS to evaluate the static gravity geopotential derived from the GRACE, CHAMP, and GOCE missions Daniel R. Roman and Dru A. Smith Session: GP52A-02Decade.
Coordinate Systems in Geodesy By K.V.Ramana Murty, O. S.
Figure and Gravity Figure of a planet (Earth) Geoid Gravity field
Institut für Erdmessung (IfE), Leibniz Universität Hannover, Germany Quality Assessment of GOCE Gradients Phillip Brieden, Jürgen Müller living planet.
1 Assessment of Geoid Models off Western Australia Using In-Situ Measurements X. Deng School of Engineering, The University of Newcastle, Australia R.
shops/gis/docs/projections.ppt.
ESA Living Planet Symposium, Bergen, T. Gruber, C. Ackermann, T. Fecher, M. Heinze Institut für Astronomische und Physikalische Geodäsie (IAPG)
Space Geodesy (1/3) Geodesy provides a foundation for all Earth observations Space geodesy is the use of precise measurements between space objects (e.g.,
NKG Working Group for Geodynamics Copenhagen, 23 –24 April, Tasks of a new Working Group on Absolute Gravimetry Herbert Wilmes Federal Agency for.
Lecture 7 – More Gravity and GPS Processing GISC February 2009.
1 Average time-variable gravity from GPS orbits of recent geodetic satellites VIII Hotine-Marussi Symposium, Rome, Italy, 17–21 June 2013 Aleš Bezděk 1.
An application of FEM to the geodetic boundary value problem Z. Fašková, R. Čunderlík Faculty of Civil Engineering Slovak University of Technology in Bratislava,
TERRESTRIAL REFERENCE SYSTEMS FOR GLOBAL NAVIGATION SATELLITE SYSTEMS
Data Requirements for a 1-cm Accurate Geoid
Satellite geophysics. Basic concepts. I1.1a = geocentric latitude φ = geodetic latitude r = radial distance, h = ellipsoidal height a = semi-major axis,
Numerical aspects of the omission errors due to limited grid size in geoid computations Yan Ming Wang National Geodetic Survey, USA VII Hotine-Marussi.
Gravity Summary For a point source or for a homogeneous sphere the solution is easy to compute and are given by the Newton’s law. Gravity Force for the.
Lecture 21 – The Geoid 2 April 2009 GISC-3325.
Regional Enhancement of the Mean Dynamic Topography using GOCE Gravity Gradients Matija Herceg 1 and Per Knudsen 1 1 DTU Space, National Space Institute,
International Symposium on Gravity, Geoid and Height Systems GGHS 2012, Venice, Italy 1 GOCE data for local geoid enhancement Matija Herceg Per Knudsen.
Full Resolution Geoid from GOCE Gradients for Ocean Modeling Matija Herceg & Per Knudsen Department of Geodesy DTU Space living planet symposium 28 June.
C.C.Tscherning, Niels Bohr Institute, University of Copenhagen. Improvement of Least-Squares Collocation error estimates using local GOCE Tzz signal standard.
Recent Investigations Towards Achieving a One Centimeter Geoid Daniel R. Roman & Dru A. Smith U.S. National Geodetic Survey GGG 2000, Session 9 The Challenge.
IERS Workshop on Conventions: September 2007 Ocean and atmospheric tides standards (used for EIGEN gravity field modeling) Richard Biancale (CNES/GRGS)
Catherine LeCocq SLAC USPAS, Cornell University Large Scale Metrology of Accelerators June 27 - July 1, 2005 Height Systems 1 Summary of Last Presentation.
Lecture 7 – Gravity and Related Issues GISC February 2008.
ST236 Site Calibrations with Trimble GNSS
A comparison of different geoid computation procedures in the US Rocky Mountains YM Wang 1, H Denker 2, J Saleh 3, XP Li 3, DR Roman 1, D Smith 1 1 National.
ESA living planet symposium Bergen Combination of GRACE and GOCE in situ data for high resolution regional gravity field modeling M. Schmeer 1,
Mayer-Gürr et al.ESA Living Planet, Bergen Torsten Mayer-Gürr, Annette Eicker, Judith Schall Institute of Geodesy and Geoinformation University.
ESA Living Planet Symposium 28 June - 2 July 2010, Bergen, Norway A. Albertella, R. Rummel, R. Savcenko, W. Bosch, T. Janjic, J.Schroeter, T. Gruber, J.
Nic Donnelly – Geodetic Data Analyst 5 March 2008 Vertical Datum Issues in New Zealand.
4.Results (1)Potential coefficients comparisons Fig.3 FIR filtering(Passband:0.005~0.1HZ) Fig.4 Comparison with ESA’s models (filter passband:0.015~0.1HZ)
1 Least Square Modification of Stokes’ Formula vs. Remove- Compute-Restore Technique Lars E. Sjöberg Royal Institute of Technology Division of Geodesy.
Evaluation of the Release-3, 4 and 5 GOCE-based Global Geopotential Models in North America M. G. Sideris (1), B. Amjadiparvar (1), E. Rangelova (1), J.
How Do we Estimate Gravity Field? Terrestrial data –Measurements of surface gravity –Fit spherical harmonic coefficients Satellite data –Integrate equations.
ESA Living Planet Symposium, 29 June 2010, Bergen (Norway) GOCE data analysis: the space-wise approach and the space-wise approach and the first space-wise.
Astronomical Institute University of Bern 1 Astronomical Institute, University of Bern, Switzerland * now at PosiTim, Germany 5th International GOCE User.
Observing Mass Distribution and Transport in the Earth System from an ESA Perspective Roger Haagmans, Pierluigi Silvestrin, Rune Floberghagen, Christian.
Satlevel Collocation Model for Adapting GEM 2008 to Regional Geoid: A case Study of Yanbu Industrial City in Saudi Arabia Kamorudeen Aleem Department of.
Vertical datum unification on Iberia and Macaronesian islands with a local gravimetric geoid. First results J. Catalão(1), M. Sevilla(2) 1) University.
Dynamic Planet 2005 Cairns, Australia August 2005
Geodesy & Crustal Deformation
Chairs: H. Sünkel, P. Visser
D. Rieser *, R. Pail, A. I. Sharov
X SERBIAN-BULGARIAN ASTRONOMICAL CONFERENCE 30 MAY - 3 JUNE, 2016, BELGRADE, SERBIA EARTH ORIENTATION PARAMETERS AND GRAVITY VARIATIONS DETERMINED FROM.
Daniel Rieser, Christian Pock, Torsten Mayer-Guerr
Geoid Enhancement in the Gulf Coast Region
Fundamentals of Geodesy
Presentation transcript:

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA DFHRS (Digital FEM Height Reference Surface) – A Rigorous Approach for the Integrated Adjustment of Fitted Height Reference Surfaces (HRS) - Reiner Jäger Hochschule Karlsruhe Technik und Wirtschaft - University of Applied Sciences Faculty of Geomatics Studiengang Vermessung und Geomatik & International Programme Geomatics (MSc) Institut für Angewandte Forschung (IAF) Moltkestrasse 30, D Karlsruhe ;

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA Height Systems - Definitions and Terrestrial Realisiation H Geoid = Ideal Height Reference Surface (HRS) h N A Gepotential Numbers C Levelling and Gravity Observations Terrestrial Height Determination H=const. Small Area ~ „constant Waterlevel“

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA NewEuropeanNormal-HeightNetwork EUREF/UELN ‚95/98 AdjustmentbyGeopotential Numbers (Differences Datumspoint W 0 bzw. C 0 Amsterdam„NAP“DHHN‘92 ( Diff.: 1 cm) AccuracySituation

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA H = h - N GNSS-Heightung H „H from h-GNSS“ HRS-Model N h h N H „HRS“ Geoid Quasigeoid

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA Gravity Potential W of the Earth at Point P(r,λ, ) Gravitational Potential of the Earth Masses HRS = Geoid / Quasigeoid – Physical Definition & Realisation Centrifgal - Potential due to Earth-Rotation Q-Geoid Geoid (W=W o =const) Spherical Harmonics Coefficients as Parameters HBF

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA Original Observation: Laserranges Derived of it: Orbit Disturbances Derived of it: Spherical Harmonics (Müller/Kaula, 1960,1962) Satellite Geodetic Methods of Gravity Field Determination Satellite Laser Ranging (SLR) „LEOS“ (Low Earth Orbit Satellites) LAGEOS 1, 2 STELLA, etc.

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA Observation Quantities 1.) Abs. Positionierung via GPS (Black-Jack Receiver/NASA, JPL): x(t) 2.) Relative Orbitmovements by Inter-Satellite Observations: 3.) Precise Accelerometers a i STAR (Onera/Frankreich): 4.) Gradiometers (e.g. GOCE) Derived of these: 1.) Orbit Determinations 2.) Gravitational Accelerations g i (x,t) and Gradiometer-Tensor Present Missions Hybride Sensors Aktice Measurements Spherical Harmonics Coefficients Derived from that: Spherical Harmonics Coefficients CHAMP Satellite Geodetic Methods of Gravity Field Determination

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA EIGEN ( = EIG EN EIGEN ( = European Improved Gravity Model of the Earth by New Techniques) [cm] HHJHHJ M6 Earth Geopotential Model 96 (NASA) HHJHHJ Satellite Geodetic Methods of Gravity Field Determination

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA EIGEN ( = EIG EN EIGEN ( = European Improved Gravity Model of the Earth by New Techniques) [cm] HHJHHJ M6 Earth Geopotential Model 96 (NASA) HHJHHJ N(p) Latitude(degree) Longitude(dgree) DFHRS_DB Namibia and Tanzania: 1.) Identical Points (N=h-H) & 2.) EGM96 bzw. EIGEN-GL04C Satellite Geodetic Methods of Gravity Field Determination

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA Bilance for Satellite Geodetic GPM(EGM2008; EIGEN) N n,m N Not sufficient for GNSS-Heighting N H = h – N !!! Further Information for further HRS N Improvement of the HRS and N necessary! Hybrid and redundant Models! Terrestrial Gravity Measurements Identical Points (H, h) N=h-H “GeoidFitting“

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA Short-Waved: ~ (1 – 3) cm Medium-/Long Waved m ! 1.) EGG97 - European Gravimetric QGeoid 1997 (IfE, Hannover) (h, H) Hybride Modeling in HRS-Computation Weg 1: Stokes-based RepresentationGRID

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA (h, H) + + Dgl.-based GPM 98 2.) Prof. Dr.-Ing. H.-G. Wenzel – Fitted Geopotenzialmodell (GPM 98 ) n = m = 1800 Accuracy of N ~ ( ) cm Parametrice Represenation (or Grid) Hybride Modeling in HRS-Computation

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA 3.) „BKG-Model – Parametrisation of the Potentials by additional Mass Points (h, H) Massen-Points as essential additional Parameters Representation of BKG HRS: Grid Hybride Modeling in HRS-Computation

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA H = h GPS (B,L) - DFHRS(B,L,h) korr H H = h GPS (B,L) - (NFEM(p|B,L,h) + ∆m·h) DFHRS-DB Direct - No - NoIdentical Points - - Online - Online - Postpro- cessed DFHRS-Concept

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA FEM representation of height reference surfaces 3D difference at any point P(x,y) along the border SA_SE of the meshes m and n has to vanish

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA Continuous Finite Element Representation of HRS

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA FEM representation of height reference surfaces Result: Continuous Height Reference Surface: NFEM(p)

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA Digital FEM Height Reference Surface (DFHRS)- Concept h GNSS + v = H + NFEM(p) - h GPS ·  m H + v = H N G ‘ j + v j = NFEM(p) +  N G (d j )  j + v = - F B / M(B)  p +   (d ,  ) j  j + v = - F L /(N(B)  cos(B))  p +   (d ,  ) j Complete New Computation of continuous HRS (p and  m)! DFHRS – Adjustment Approach < 2005 State of the Art < 2005  g·S(  )dσ + v = NFEM(p) NFEM(p) N(pj)N(pj) (Global, regional, local) <= Sets of Deflections from Vertical (Zenith Cameras or Geoidmodels) <= GPS/Levelling Fitting Points <= Any number Geoidmodels <= „Gravity“ by correlated Geoidmodels In the sense of an 2 step adjustment

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA EGG97 European Gravimetric Geoid 1997 Mean- up to lang-waved Errors 0.1 – 1.5 m ! => New Concepts, more „precise“ or better: (H,h)-fitted solutions Weak-Shapes of Classical Gravimetric „Geoid“models

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA TallinnExample Pure Geoid- Approach EGG97-Geoid without Datum  N(d) +/- 3.5 cm „Tilt“ Standard GNSS/GPS-heighting Approaches using identical Points

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA TallinnExample Pure Geoidapproach EGG97-Geoid With Datum  N(d) +/- 4 mm HBF:= N G +  N G (d) Standard GNSS/GPS-heighting Approaches using identical Points

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA DFHRS Software Identical Identical„Fitting“Points(B,L,h;H) Meshes Meshes Patches Patches

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA Every geoid- and/or vertical deflection model N can be „patched“ DFHRS Software  N G (d j ) Hochschule für Technik und Wirtschaft - University of Applied Sciences LVA Baden-Württemberg LVA Hessen LVA Rheinland-Pfalz LVA Riga, Latvia University of Federal Forces Munich University Darmstadt

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA DFHRS_DB Design Parameters <_3_cm DFHRS_DB Windhuk, Namibia EGM96 Fitting Point Density (< 10 mm points, EGG97) 50 points per (100 km x 100 km): <_1_cm DFHRS_DB 50 points per (100 km x 100 km): <_1_cm DFHRS_DB 10 points per (100 km x 100 km): < 3_cm DFHRS_DB 10 points per (100 km x 100 km): < 3_cm DFHRS_DB 3-4 points per (100 km x100 km): < 5-10_cm DFHRS_DB 3-4 points per (100 km x100 km): < 5-10_cm DFHRS_DB Meshsize (p=3) km : HRS approximation error < (5-10) cm km : HRS approximation error < (5-10) cm 10 km: HRS approximation error <1 cm10 km: HRS approximation error <1 cm 5 km: HRS approximation error < 0.5 cm 5 km: HRS approximation error < 0.5 cm

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA DFHRS_DB Design Parameters Design Studies < _cm DFHRS Germany Patch-Size (EGG97) km for a < 1_cm DFHRS_DB km for a < 1_cm DFHRS_DB 50 – 60 km for a < 3_cm DFHRS_DB 50 – 60 km for a < 3_cm DFHRS_DB 300 km for a < 10_cm DFHRS_DB 300 km for a < 10_cm DFHRS_DB (3-5) points per patch

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA < 10cm DFHRS Europe – „Fittingpoint-Design“ ETRS89/EVRS „GPS-/Levelling- Points of EVN“ Fitting Points NFEM(p) =: h - H Used for the 1st Version < 10_cm DFHBFS Europe

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA AustriaGermanyEstoniaLatviaLithuania Switzerla nd Number of unused control points RMS [cm] <_10_cm DFHRS_DB - Indepent Quality Control (Present Version, 35 km meshes, 34 Patches) <1_dm EVRF2004

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA Overview about European DFHRS_DB 30 km Mesh Size 10 km 5 km < 1 cm < 3 cm < 10 cm 2005 New

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA DFHRS_DB - Product as CD-Installation of State Land Services in Germany CopyProtection inclusive

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA < 5 cm DFHRS_DB Florida (… Masterthesis )

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA 5 km FEM Meshes European DFHRS_DB… including < 1 cm DFHRS_DB Ungary Test - Area (50 x 90 ) km 1-2_cm DFHRS_DB Budapest DFHRS 4.0 DFHRS 4.0 Software

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA DFHRS in Practice

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA

DFRHS – Extension to Gravity Observations Geodetic Network Optimization - 1st/2nd/3rd Order Design: A,P =>C p

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA DFHRS - Extension to Gravity Observations Sensor-Observation

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA „<1cm-Resolution („2mm“) of HRS“ Instead of classical global spherical harmonics (n=m=7200) Spherical Cap Harmonics (SCHA) Cap P Extension of the DFHRS-Concept to Gravity Observations

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA  0 =90°  0 = arbitrary  0 =90° l = 6, l = 2, l = 4 l(2) = l(6) = l(4) =  0 arbitrary Global Sperical- Harmonics Spherical Cap Harmonics (SCHA)

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA DFHRS - Extension to Gravity Observations SCHA „Handling“ SCHA „Resolution“ („2mm Geoid“, n=7200 u = ) α=α=1° (=110 km area) => k-SCHA = 80 and u = ° (=330 km area) => k-SCHA = 250 and u= α=α= α=α=25° (Europe) => k-SCHA = 2000 and u =

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA DFHRS - Extension to Gravity Observations Sensor-Observation at Position P(x,y,z) Treatment of Gravity Observations

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA Treatment of GPM - EGM96 / EGM99, EIGEN, etc

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA h GNSS + v = H + f T  p - h GPS ·  m H + v = H N G ‘ j + v j = f T  p +  N G (d j )  j + v = - f B T / M(B)  p +   (d ,  ) j  j + v = - f L T /(N(B)  cos(B))  p +   (d ,  ) j  g·S(  )dσ + v = NFEM(p)= f T  p NFEM(p) N(pk)N(pk) Extension of the DFHRS-Concept to gravity observations

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA Example Saarland: 825 Gravity Observations

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA Example Saarland (Jan. 06) DFHRS-Software with Computation Design Version 1 ( 1cm Reference) EGG97 („Gravity indirect“) + Identical Points Version 2 („Gravity indirect“) Gravity Disturbances dg GPM98 Identical Points 1 CAP Result: 1_cm Coincidence of the HRS between Version 1 and Version 2

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA „1_cm DFHRS of Baden-Württemberg“ (EIGEN-GPM, Gravity Values, Fitting Points)

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA „1_cm DFHRS of Baden-Württemberg“ (EIGEN-GPM, Gravity Values, Fitting Points)

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA „1_cm DFHRS of Baden-Württemberg“ (EIGEN-GPM, gravity values) Number B[°] L[°] dg[mgal] v[mgal] : : : : : : : : : : Fig. 8 DFHRS-software report for the gravity disturbances dg with the list of corrections v

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA Solution Concept for HRS-Computation and GNSS-Heighting *DFHRS-Software - Strict mathematical base for continuous FEM_HRS & *DFHRS-Software* - New concept for an overdetermined BVP =>parametric HRS determination - Mesh and patch-design => Any accuracy and any! area size (<= FEM) - Open for all geometrical & physical (e.g. gravity) observations! - DFHRS = (Leading) Geoidfitting Concept - Ready for 1 cm EVRS using existing data +EPN densification fitting-points! - High practical relevance for GNSS services all over the world - Industrial Standard in GNSS-Equipment and GIS - DFHRS_DB => RTCM 3.q Message used in GNSS-Services, NTRIP etc. - High Capacities for International Cooperations and for EVRS