Unified L2 Abstractions for L3-Driven Fast Handover - Media Independent L2 Triggers from the Perspective of IP Layer - Koki Mitani Rie Shibui Kazutaka.

Slides:



Advertisements
Similar presentations
Feb. 21, 2008AsiaFI School on Mobile and Wireless Networks1 Enhancing IP Mobility Handover Management toward Future Internet Koshiro Mitsuya Graduate School.
Advertisements

Stream Control Transmission Protocol (SCTP) Readdressing Retransmission Trigger draft-micchie-tsvwg-fastmsctp-01 Michio Honda Keio University
Mobile IP By Keenan Yang May 29, 2003 MultiMedia Systems CSE 228.
IPv6 Mobility Support Henrik Petander
Handover Management for Mobile Nodes in IPv6 Networks Nicolas Montavont and Thomas Noël, IEEE Communications Magazine, August 2002 Speaker:
Tetsuya Arita and Fumio Teraoka
Unified L2 Abstractions for L3-Driven Fast handover (draft-koki-mobopts-l2-abstractions-03.txt) - L3-Driven Fast Handover on FMIPv6 (TARZAN) - Koki Mitani,
Fast L3 Handoff in Wireless LANs Andrea G. Forte Sangho Shin Henning Schulzrinne.
1 Introduction to Mobile IPv6 IIS5711: Mobile Computing Mobile Computing and Broadband Networking Laboratory CIS, NCTU.
Mobility Support in IPv6 Advanced Internet, 2004 Fall 8 November 2004 Sangheon Pack.
MIP Extensions: FMIP & HMIP
Network Research Lab. Sejong University, Korea Jae-Kwon Seo, Kyung-Geun Lee Sejong University, Korea.
IP Mobility Support Basic idea of IP mobility management
Distributed mobility management in the context of the MEDIEVAL project MEVICO Final Seminar, part 2 23 rd November 2012 Carlos J. Bernardos, UC3M
Dynamic Tunnel Management Protocol for IPv4 Traversal of IPv6 Mobile Network Jaehoon Jeong Protocol Engineering Center, ETRI
 As defined in RFC 826 ARP consists of the following messages ■ ARP Request ■ ARP Reply.
Inter-Subnet Mobile IP Handoffs in b Wireless LANs Albert Hasson.
1 DHCP-based Fast Handover protocol NTT Network service systems laboratories Takeshi Ogawa draft-ogawa-fhopt-00.txt 62nd IETF - Minneapolis.
IPv4 and IPv6 Mobility Support Using MPLS and MP-BGP draft-berzin-malis-mpls-mobility-00 Oleg Berzin, Andy Malis {oleg.berzin,
Ad-Hoc Networking Course Instructor: Carlos Pomalaza-Ráez A Paper Presentation of ”Multihop Sensor Network Design for Wide-Band Communications” Proceedings.
1 Route Optimization based on ND-Proxy for Mobile Nodes in IPv6 Mobile Networks Jaehoon Jeong, Kyeongjin Lee, Jungsoo Park, Hyoungjun Kim ETRI
FMIPv6 Usage with DNA Protocol draft-koodli-dna-fmip-00 Rajeev Koodli, Syam Madanapalli DNA WG, 63 IETF - Paris.
MOBILITY SUPPORT IN IPv6
Fast handovers for PMIPv6 Hidetoshi YokotaKDDI Lab Kuntal Chowdhury Starent Networks Rajeev KoodliNokia Research Center Basavaraj PatilNokia Siemens Networks.
1 Review of Important Networking Concepts Introductory material. This slide uses the example from the previous module to review important networking concepts:
1 Mobile IPv6 Fast Handovers for 3G CDMA Networks Hidetoshi Yokota KDDI Lab Gopal Dommety Cisco.
Mobile IPv6 Fast Handovers for 3G CDMA Networks Hidetoshi Yokota KDDI Lab Gopal Dommety Cisco 65 th IETF MIPSHOP WG.
Fast handovers for PMIPv6 Hidetoshi Yokota KDDI Lab Kuntal Chowdhury Starent Networks Rajeev Koodli Nokia Siemens Networks Basavaraj Patil Nokia Siemens.
1 Chapter06 Mobile IP. 2 Outline What is the problem at the routing layer when Internet hosts move?! Can the problem be solved? What is the standard solution?
Adapted from: Computer Networking, Kurose/Ross 1DT066 Distributed Information Systems Chapter 6 Wireless, WiFi and mobility.
Chapter 5 outline 5.1 Introduction and services
1 Handover for PMIPv6 Using MIH KANG Joon-Suk 姜 俊錫.
67 th IRTF MOBOPTS – 1 Media Independent Pre-Authentication and Implementation (draft-ohba-mobopts-mpa-framework-03.txt) (draft-ohba-mobopts-mpa-implementation-03.txt)
Media-Independent Pre-Authentication (draft-ohba-mobopts-mpa-framework-01.txt) (draft-ohba-mobopts-mpa-implementation-01.txt) Ashutosh Dutta, Telcordia.
Introducing Reliability and Load Balancing in Home Link of Mobile IPv6 based Networks Jahanzeb Faizan, Mohamed Khalil, and Hesham El-Rewini Parallel, Distributed,
Faqir Zarrar Yousaf, Christian Müller and Christian Wietfeld technische universität dortmund Communication Networks Institute Prof. Dr.-Ing. C. Wietfeld.
68 th IETF, Prague Czech Republic Issues with L2 abstractions and how they affect QOS-based handovers Nada Golmie Advanced Networking Technologies Division.
An Integrated QoS, Security and Mobility Framework for Delivering Ubiquitous Services Across All IP-based Networks Haitham Cruickshank University of Surrey.
Inter-Mobility Support in Controlled 6LoWPAN Networks Zinonos, Z. and Vassiliou, V., GLOBECOM Workshops, 2010 IEEE.
Agenda Introduction State the problems with regular Mobile IP Goals Fast Handover Bicasting Hierarchical Mobile IP Video Summary of conclusions Acknowledgements.
Handoff in IEEE Andrea G. Forte Sangho Shin Prof. Henning Schulzrinne.
1 A Cross-Layering Design for IPv6 Fast Handover Support in an IEEE e Wireless MAN Youn-Hee Han, Heejin Jang, JinHyeock Choi, Byungjoo Park and Janise.
IEEE MEDIA INDEPENDENT HANDOVER DCN: Title: MIH_Handover primitives and scenarios Date Submitted: April, 30,
Mobile IPv6 in 6NET: An Overview Chris Edwards, Lancaster University, UK.
Introduction to Mobile IPv6
MIPSHOP – November, 2005 Event Services and Command Services for Media Independent Handover Presentation prepared by: Srini Sreemanthula Presented by:
JinHyeock Choi, DongYun Shin hppt:// Fast Router Discovery with L2 Support draft-jinchoi-dna-frd-01.txt.
Kyocera Corporation Enhance radio network connectivity and maintain a Quality of IP service application Proposal of extension of IEEE /7/16.
Santhosh Rajathayalan ( ) Senthil Kumar Sevugan ( )
Doc.: IEEE /345r0 Submission May 2002 Albert Young, Ralink TechnologySlide 1 Enabling Seamless Hand-Off Across Wireless Networks Albert Young.
- IETF 64 - FMIPv6 over IEEE (draft-jang-mipshop-fh ’.txt) HeeJin Jang, Youn-Hee Han, Soohong Daniel Park SAMSUNG Junghoon Jee, Jaesun Cha.
Multiple Care-of Address Registration on Mobile IPv6 Ryuji Wakikawa Keisuke Uehara Thierry Ernst Keio University / WIDE.
RFC 4068bis draft-ietf-mipshop-fmipv6-rfc4068bis-01.txt Rajeev Koodli.
for SDN-based flow handover in wireless environments Daniel Corujo Carlos Guimarães Rui L. Aguiar
IEEE MEDIA INDEPENDENT HANDOVER DCN: XXXX Title: Handover Flow Diagrams for Annex A.6 Date Submitted: May 26, 2007.
Trend of Mobility Management Yen-Wen Chen Ref: 1.Draft IEEE Standard for Local and Metropolitan Area Networks: Media Independent Handover Services 2.Transport.
Andrea G. Forte Sangho Shin Henning Schulzrinne
Network –based fast handovers for local mobility (NFLM)
Thomas C. Schmidt HAW Hamburg
Booting up on the Home Link
Networking Applications
Media-Independent Pre-authentication (MPA) Framework
Mobile IPv6 Fast Handovers for 3G CDMA Networks
CARD Designteam A. Singh, D. Funato, H. Chaskar, M. Liebsch
2002 IPv6 技術巡迴研討會 IPv6 Mobility
Summary of the InternetCAR testbeds
Mobility Support in Wireless LAN
Thomas C. Schmidt, Matthias Wählisch, Rajeev Koodli, Gorry Fairhurst
Mobile IP Outline Intro to mobile IP Operation Problems with mobility.
Presentation transcript:

Unified L2 Abstractions for L3-Driven Fast Handover - Media Independent L2 Triggers from the Perspective of IP Layer - Koki Mitani Rie Shibui Kazutaka Gogo Fumio Teraoka Keio University

Outline L2 Abstractions for L3-driven Fast HandoverL2 Abstractions for L3-driven Fast Handover –Goals of L3-driven fast handover –Architecture for control information exchange –L2 Primitives for L3-driven fast handover DetailsDetails –Mapping of Primitives and Wireless LAN Parameters EvaluationEvaluation –L3-Driven Fast Handover on FMIPv6 DemonstrationDemonstration –L3-Driven Fast Handover on Predictive-LIN6

Current SequenceCurrent Sequence L3-Driven Fast HandoverL3-Driven Fast Handover Goal A: L3-Driven Fast Handover L2 Handover Delay L3 L2 Time L3 Handover Preparation more than 1.5 sec more than 1 sec Disruption L3 L2 L2-LinkTo BeDown L2-LinkConnectL2-LinkUp L2 Handover L3 Handover Preparation L3 Handover Time Disruption L2-LinkStatus/PeerList L2-PeerFound/Lost

Goal B: L3-Driven Vertical Handover L2-c L2-a L2-b L3 L2-LinkStatus L3 Handover L2-LinkConnect L3 Handover L2-LinkConnect L2-LinkUp Communication quality improves. L2-LinkToBeDown Continuous communication is difficult. Time

Abstract Entity Service User Layer Service Provider Layer Inter-Layer System Protocol Entity Abstract Entity Protocol Entity Abstract Entity Protocol Entity Abstract Entity Protocol Entity Request Confirm Indication Response Architecture for Control Information Exchange Request is the acquisition request of the lower layer information or a registration of conditions for Indication. In response, Confirm returns. Indication is asynchronously delivered to an upper layer when an event which needs to be notified occurs. In response, Response returns.

Usage Types of Primitives Type 1. Provide L2 information to upper layers request: Acquisition request confirm: L2 information Type 2. Notify upper layers of L2 events request: Registration for notification confirm: Valid or invalid indication: Asynchronous notification Type 3. Control L2 actions from upper layers request: Control confirm: Ack or nack request confirmindication request confirm request confirm TYPE 1 TYPE 2 TYPE 3

L2-LinkStatusL2-LinkStatus –Acquisition request for the current link status. L2-PeerListL2-PeerList –Acquisition request for the list of possible access points. L2-PeerFound / L2-PeerLostL2-PeerFound / L2-PeerLost –Indication of discovery/missing of candidate access points. L2-LinkUp / L2-LinkDownL2-LinkUp / L2-LinkDown –Notification that a new link is brought up / an existing link is brought down. L2-LinkToBeDownL2-LinkToBeDown –Notification that the existing link is bringing down. L2-LinkConnect / L2-LinkDisconnectL2-LinkConnect / L2-LinkDisconnect –Request for connection/disconnection of the specific link. L2 Primitives for L3-driven Fast Handover VERY GOOD : high quality GOOD : available (high watermark) FAIR : adequate quality BAD : low quality (low watermark) VERY BAD : unavailable Link Quality Level TYPE 1 TYPE 2 TYPE 3

Outline L2 Abstractions for L3-driven Fast HandoverL2 Abstractions for L3-driven Fast Handover –Goals of L3-driven fast handover –Architecture for control information exchange –L2 Primitives for L3-driven fast handover DetailsDetails –Mapping of Primitives and Wireless LAN Parameters EvaluationEvaluation –L3-Driven Fast Handover on FMIPv6 DemonstrationDemonstration –L3-Driven Fast Handover on Predictive-LIN6

L2 Primitives for Link Status L2-LinkStatusL2-LinkStatus –Network Interface ID –Peer MAC AddressMAC Address –Condition BandwidthBandwidth Link Quality LevelLink Quality Level L2-LinkStatus i/f id: ath0 peer { MACaddr: 01:23:45:67:89:ab } condition { bw: 2Mbps quality: GOOD } VERY GOOD : high quality GOOD : available (high watermark) FAIR : adequate quality BAD : low quality (low watermark) VERY BAD : unavailable Link Quality Level

L2 Primitives for AP Discovery L2-PeerListL2-PeerList –Network Interface ID –Peer List One or more [Peer*, Condition*] tuplesOne or more [Peer*, Condition*] tuples L2-PeerFound / L2-PeerLostL2-PeerFound / L2-PeerLost –Network Interface ID –Peer List One or more [Peer*, Condition*] tuplesOne or more [Peer*, Condition*] tuples * Each Peer and Condition parameter consists of one or more sub- parameters, as described in the next slide. L2-PeerList i/f id: ath0 [Peer1, Condition1] [Peer2, Condition2] [Peer3, Condition3] [Peer4, Condition4] L2-PeerFound i/f id: ath0 [Peer5, Condition5] L2-PeerLost i/f id: ath0 [Peer5, Condition5]

L2 Primitives for L3 Handover L2-LinkUpL2-LinkUp –Network Interface ID –Peer MAC AddressMAC Address L2-LinkDownL2-LinkDown –Network Interface ID –Peer MAC AddressMAC Address L2-LinkUp i/f id: ath0 peer { MACaddr: 01:23:45:67:89:ab } L2-LinkDown i/f id: ath0 peer { MACaddr: 01:23:45:67:89:ab }

L2 Primitives for Preparing L3 Handover L2-LinkToBeDownL2-LinkToBeDown –Network Interface ID –Peer MAC AddressMAC Address –Condition BandwidthBandwidth Link Quality LevelLink Quality Level L2-LinkToBeDown i/f id: ath0 peer { MACaddr: 01:23:45:67:89:ab } condition { bw: 2Mbps quality: BAD } VERY GOOD : high quality GOOD : available (high watermark) FAIR : adequate quality BAD : low quality (low watermark) VERY BAD : unavailable Link Quality Level

L2 Primitives for L3-Driven Handover L2-LinkConnectL2-LinkConnect –Network Interface ID –Peer MAC AddressMAC Address L2-LinkDisconnectL2-LinkDisconnect –Network Interface ID –Peer MAC AddressMAC Address L2-LinkConnect i/f id: ath0 peer { MACaddr: 01:23:45:67:89:ab } L2-LinkDisconnect i/f id: ath0 peer { MACaddr: 01:23:45:67:89:ab }

Outline L2 Abstractions for L3-driven Fast HandoverL2 Abstractions for L3-driven Fast Handover –Goals of L3-driven fast handover –Architecture for control information exchange –L2 Primitives for L3-driven fast handover DetailsDetails –Mapping of Primitives and Wireless LAN Parameters EvaluationEvaluation –L3-Driven Fast Handover on FMIPv6 DemonstrationDemonstration –L3-Driven Fast Handover on Predictive-LIN6

What is FMIPv6? L3 Fast Handover Protocol based on Mobile IPv6L3 Fast Handover Protocol based on Mobile IPv6 –AR forwards data packets to the new location during L3 handover Internet Home Agent () (Location Management Server) Correspondent Node Mobile Node Previous Access Router New Forwarding data packets from/to the new location Previous Care-of Address Binding Update of New Care-of Address Home Address Previous Care-of Address Binding Cache Registration of new location by MN is in progress.

L3-Driven + FMIPv6 Predictive ModeL3-Driven + FMIPv6 Predictive Mode L3-Driven Fast Handover on FMIPv6 L3 L2 Time L2-LinkTo BeDown L2-LinkConnectL2-LinkUp L2 Handover L3 Handover Preparation L3 Handover RtSolPr Mobile Node Previous AR New AR HI FBack FNA L2-PeerList L2-PeerFound/Lost AP/AR Discovery FBU PrRtAdv HAck Data Packets Exchange Information Start Forwarding Handoff Complete

FMIPv6 Reactive modeFMIPv6 Reactive mode –The case that handover prediction failed. L3-Driven Fast Handover on FMIPv6 L3 L2 Time L2-LinkDown L2-LinkConnect L2-LinkUp L2 Handover L3 Handover RtSolPr Mobile Node Previous AR New AR HI FBack FNA[FBU] L2-PeerList L2-PeerFound/Lost AP/AR Discovery FBU PrRtAdv HAck Data Packets Exchange Information Start Forwarding Handoff Complete

FMIPv6 Implementation for BSD: TARZAN By Nautilus6 ProjectBy Nautilus6 Project – Based on SHISABased on SHISA –Mobile IPv6 and NEMO implementation for KAME (*BSD) – Support both MN and ARSupport both MN and AR L2 trigger by LIES –Inter-Layer Control Information Exchange Architecture – –L2 Abstraction: Manual CAR (Candidate Access Router) installationManual CAR (Candidate Access Router) installation –car_info.conf Buffering is not supported yet.Buffering is not supported yet.

Evaluation of L3-Driven Predictive FMIPv6 (without Buffering) PCoA L2 Handover PCoA (Forwarded to NCoA) NCoA FBU BU FNA BA (from Distant HA) FBack LinkConnect LinkToBeDown LinkUp Total Disruption Time: 60ms(L2) + 50ms(L3) = 110ms / L2: Wireless Environment Emulator

Outline L2 Abstractions for L3-driven Fast HandoverL2 Abstractions for L3-driven Fast Handover –Goals of L3-driven fast handover –Architecture for control information exchange –L2 Primitives for L3-driven fast handover DetailsDetails –Mapping of Primitives and Wireless LAN Parameters EvaluationEvaluation –L3-Driven Fast Handover on FMIPv6 DemonstrationDemonstration –L3-Driven Fast Handover on Predictive-LIN6

Current SequenceCurrent Sequence L3-Driven Fast HandoverL3-Driven Fast Handover L3-Driven Fast Handover on Predictive-LIN6 L2 Handover Delay L3 L2 Time L3 Handover Preparation more than 1.5 sec more than 1 sec Disruption L3 L2 L2-LinkTo BeDown L2-LinkConnectL2-LinkUp L2 Handover L3 Handover Preparation L3 Handover Time Disruption L2-LinkStatus/PeerList L2-PeerFound/Lost

Application: DVTS (15Mbps)Application: DVTS (15Mbps) –Digital Video Stream on IEEE1394 Encapsulated into IP –Sender: MN in a car L3 Mobility Protocol: Predictive-LIN6 (No Forwarding, No Buffering)L3 Mobility Protocol: Predictive-LIN6 (No Forwarding, No Buffering) – –Prediction of LinkDown and Candidate AP/AR by L2 Triggers –DAD is performed before L2 handover L2: IEEE802.11a (5GHz, 54Mbps)L2: IEEE802.11a (5GHz, 54Mbps) –All APs are same channel –All APs have different SSID Project: SIMPLEProject: SIMPLE –Smart Internet Mobile Project with Layered Effects Sender (MN car) Receiver (CN) Handover: L2 (1-2ms) + L3 (RTT 1-2ms) LinkToBeDown () LinkToBeDown (Prepare L3 Handover)  LinkConnect (L2 switch to a specified AP)  LinkUp ()  LinkUp (Finish L3 Handover) START IPv6 Subnet Demonstration of L3-Driven Fast Handover on Predictive-LIN6

Sequence of L3-Driven Fast Handover on Predictive-LIN6 Sequence of L2 and L3 Handover: 3-4ms (L3 Disruption Time) Sequence of L2 Trigger: 40us Userland Daemon Kernel Wireless Device L2 Event Indication 2.6 us 13.1 us 19.8 us Time L2 L3 LinkDown LinkUp 0.8 ms 0.9 ms AddressConfiguration Location Registration RTT: 1-2 ms Time LinkConnect

Summary Designed L2 abstractions as primitives.Designed L2 abstractions as primitives. –L2-PeerList / L2-PeerFound / L2-PeerLost –L2-LinkStatus / L2-LinkUp / L2-LinkDown / L2-LinkToBeDown –L2-LinkConnect / L2-LinkDisconnect L3-driven fast handover on FMIPv6 was evaluated.L3-driven fast handover on FMIPv6 was evaluated. L3-driven fast handover on Predictive-LIN6 demonstration.L3-driven fast handover on Predictive-LIN6 demonstration. IETF Document: Teraoka Lab. Keio Univ. Nautilus6 Project SIMPLE Project