Lecture 3: Signals & Systems Concepts

Slides:



Advertisements
Similar presentations
1 Signals and Systems Fall 2003 Lecture #2 9 September ) Some examples of systems 2) System properties and examples a) Causality b) Linearity c)
Advertisements

Signals and Systems – Chapter 2
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Response to a Sinusoidal Input Frequency Analysis of an RC Circuit.
Lecture 7: Basis Functions & Fourier Series
Characteristics of a Linear System 2.7. Topics Memory Invertibility Inverse of a System Causality Stability Time Invariance Linearity.
ECE 8443 – Pattern Recognition ECE 3163 – Signals and Systems Objectives: Review Resources: Wiki: State Variables YMZ: State Variable Technique Wiki: Controllability.
AMI 4622 Digital Signal Processing
EE-2027 SaS 06-07, L11 1/12 Lecture 11: Fourier Transform Properties and Examples 3. Basis functions (3 lectures): Concept of basis function. Fourier series.
Lecture 4: Linear Systems and Convolution
Lecture 1: Signals & Systems Concepts
Lecture 19: Discrete-Time Transfer Functions
Lecture 17: Continuous-Time Transfer Functions
Lecture 2: Signals Concepts & Properties
Lecture 5: Linear Systems and Convolution
EE-2027 SaS, L11/7 EE-2027 Signals and Systems Dr Martin Brown E1k, Main Building
Lecture 8: Fourier Series and Fourier Transform
Lecture 14: Laplace Transform Properties
EE-2027 SaS, L11 1/13 Lecture 11: Discrete Fourier Transform 4 Sampling Discrete-time systems (2 lectures): Sampling theorem, discrete Fourier transform.
1 Lavi Shpigelman, Dynamic Systems and control – – Linear Time Invariant systems  definitions,  Laplace transform,  solutions,  stability.
Lecture 9: Fourier Transform Properties and Examples
Lecture 6: Linear Systems and Convolution
Signals and Systems Lecture #5
1 Lavi Shpigelman, Dynamic Systems and control – – Linear Time Invariant systems  definitions,  Laplace transform,  solutions,  stability.
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Definition of a System Examples Causality Linearity Time Invariance.
Course Outline (Tentative)
Basic System Properties. Memory Invertibility Causality Stability Time Invariance Linearity.
EE3010 SaS, L7 1/19 Lecture 7: Linear Systems and Convolution Specific objectives for today: We’re looking at continuous time signals and systems Understand.
Time Domain Representation of Linear Time Invariant (LTI).
Time-Domain Representations of LTI Systems
CISE315 SaS, L171/16 Lecture 8: Basis Functions & Fourier Series 3. Basis functions: Concept of basis function. Fourier series representation of time functions.
ECE 8443 – Pattern Recognition ECE 3163 – Signals and Systems Objectives: Definition of a System Examples Causality Linearity Time Invariance Resources:
EEE 301 Signal Processing and Linear Systems Dr
Signals and Systems Dr. Mohamed Bingabr University of Central Oklahoma
COSC 3451: Signals and Systems Instructor: Dr. Amir Asif
1 Lecture 1: February 20, 2007 Topic: 1. Discrete-Time Signals and Systems.
Chapter 2 Time Domain Analysis of CT System Basil Hamed
Motivation Thus far we have dealt primarily with the input/output characteristics of linear systems. State variable, or state space, representations describe.
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Causality Linearity Time Invariance Temporal Models Response to Periodic.
ENGG 330 Class 2 Concepts, Definitions, and Basic Properties.
Signals and Systems 1 Lecture 7 Dr. Ali. A. Jalali September 4, 2002
Course Outline (Tentative) Fundamental Concepts of Signals and Systems Signals Systems Linear Time-Invariant (LTI) Systems Convolution integral and sum.
4. Introduction to Signal and Systems
Time Domain Representation of Linear Time Invariant (LTI).
Signals and Systems Analysis NET 351 Instructor: Dr. Amer El-Khairy د. عامر الخيري.
Signals and Systems Lecture #6 EE3010_Lecture6Al-Dhaifallah_Term3321.
1 LTI Systems; Convolution September 4, 2000 EE 64, Section 1 ©Michael R. Gustafson II Pratt School of Engineering.
Description and Analysis of Systems Chapter 3. 03/06/06M. J. Roberts - All Rights Reserved2 Systems Systems have inputs and outputs Systems accept excitation.
Math for CS Fourier Transforms
Time Domain Representation of Linear Time Invariant (LTI).
What is System? Systems process input signals to produce output signals A system is combination of elements that manipulates one or more signals to accomplish.
Signals and systems By Dr. Amin Danial Asham.
Lecture 1: Signals & Systems Concepts
EE 309 Signal and Linear System Analysis
Recap: Chapters 1-7: Signals and Systems
Description and Analysis of Systems
Signal and Systems Chapter 2: LTI Systems
Signals & Systems (CNET - 221) Chapter-2 Introduction to Systems
Unit Inputs, Systems, and System Properties
1.1 Continuous-time and discrete-time signals
Signals & Systems (CNET - 221) Chapter-2
Lecture 1: Signals & Systems Concepts
Signals & Systems (CNET - 221) Chapter-3 Linear Time Invariant System
Signals and Systems Lecture 2
Signals and Systems Revision Lecture 1
Lecture 4: Linear Systems and Convolution
Lecture 3: Signals & Systems Concepts
Linear Time Invariant systems
Chapter 3 Modeling in the Time Domain
Lecture 3 Discrete time systems
SIGNALS & SYSTEMS (ENT 281)
Presentation transcript:

Lecture 3: Signals & Systems Concepts Systems, signals, mathematical models. Continuous-time and discrete-time signals. Energy and power signals. Linear systems. Examples for use throughout the course, introduction to Matlab and Simulink tools. Specific objectives: Introduction to systems Continuous and discrete time systems Properties of a system Linear (time invariant) LTI systems System implementation in Matlab and Simulink EE-2027 SaS, L3:

Lecture 3: Resources SaS, Oppenheim & Willsky, C1 MIT notes, Lecture 2 Mastering Matlab 6, Prentice Hall Mastering Simulink 4 Matlab help EE-2027 SaS, L3:

Linear Systems A system takes a signal as an input and transforms it into another signal Linear systems play a crucial role in most areas of science Closed form solutions often exist Theoretical analysis is considerably simplified Non-linear systems can often be regarded as linear, for small perturbations, so-called linearization For the remainder of the lecture/course we’re primarily going to be considering Linear, Time Invariant systems (LTI) and consider their properties continuous time (CT) x(t) y(t) discrete time (DT) x[n] y[n] EE-2027 SaS, L3:

Examples of Simple Systems To get some idea of typical systems (and their properties), consider the electrical circuit example: which is a first order, CT differential equation. Examples of first order, DT difference equations: where y is the monthly bank balance, and x is monthly net deposit which represents a discretised version of the electrical circuit Example of second order system includes: System described by order and parameters (a, b, c) EE-2027 SaS, L3:

First Order Step Responses People tend to visualise systems in terms of their responses to simple input signals (see Lecture 4…) The dynamics of the output signal are determined by the dynamics of the system, if the input signal has no dynamics Consider when the input signal is a step at t, n = 1, y(0) = 0 First order CT differential system First order DT difference system u(t) y(t) t EE-2027 SaS, L3:

System Linearity The most important property that a system possesses is linearity It means allows any system response to be analysed as the sum of simpler responses (convolution) Simplistically, it can be imagined as a line y x Specifically, a linear system must satisfy the two properties: 1 Additive: the response to x1(t)+x2(t) is y1(t) + y2(t) 2 Scaling: the response to ax1(t) is ay1(t) where aC Combined: ax1(t)+bx2(t)  ay1(t) + by2(t) E.g. Linear y(t) = 3*x(t) why? Non-linear y(t) = 3*x(t)+2, y(t) = 3*x2(t) why? (equivalent definition for DT systems) EE-2027 SaS, L3:

Bias and Zero Initial Conditions Intuitively, a system such as: y(t) = 3*x(t)+2 is regarded as being linear. However, it does not satisfy the scaling condition. There are several (similar) ways to transform it to an equivalent linear system Perturbations around operating value x*, y* Linear System Derivative Locally, these ideas can also be used to linearise a non-linear system in a small range EE-2027 SaS, L3:

Linearity and Superposition Suppose an input signal x[n] is made of a linear sum of other (basis/simpler) signals xk[n]: then the (linear) system response is: The basic idea is that if we understand how simple signals get affected by the system, we can work out how complex signals are affected, by expanding them as a linear sum This is known as the superposition property which is true for linear systems in both CT & DT Important for understanding convolution (next lecture) EE-2027 SaS, L3:

Definition of Time Invariance A system is time invariant if its behaviour and characteristics are fixed over time We would expect to get the same results from an input-output experiment, if the same input signal was fed in at a different time E.g. The following CT system is time-invariant because it is invariant to a time shift, i.e. x2(t) = x1(t-t0) E.g. The following DT system is time-varying Because the system parameter that multiplies the input signal is time varying, this can be verified by substitution EE-2027 SaS, L3:

System with and without Memory A system is said to be memoryless if its output for each value of the independent variable at a given time is dependent on the output at only that same time (no system dynamics) e.g. a resistor is a memoryless CT system where x(t) is current and y(t) is the voltage A DT system with memory is an accumulator (integrator) and a delay Roughly speaking, a memory corresponds to a mechanism in the system that retains information about input values other than the current time. EE-2027 SaS, L3:

System Causality A system is causal if the output at any time depends on values of the output at only the present and past times. Referred to as non-anticipative, as the system output does not anticipate future values of the input If two input signals are the same up to some point t0/n0, then the outputs from a causal system must be the same up to then. E.g. The accumulator system is causal: because y[n] only depends on x[n], x[n-1], … E.g. The averaging/filtering system is non-causal because y[n] depends on x[n+1], x[n+2], … Most physical systems are causal EE-2027 SaS, L3:

System Stability Informally, a stable system is one in which small input signals lead to responses that do not diverge If an input signal is bounded, then the output signal must also be bounded, if the system is stable To show a system is stable we have to do it for all input signals. To show instability, we just have to find one counterexample E.g. Consider the DT system of the bank account when x[n] = d[n], y[0] = 0 This grows without bound, due to 1.01 multiplier. This system is unstable. E.g. Consider the CT electrical circuit, is stable if RC>0, because it dissipates energy EE-2027 SaS, L3:

Invertible and Inverse Systems A system is said to be invertible if distinct inputs lead to distinct outputs (similar to matrix invertibility) If a system is invertible, an inverse system exists which, when cascaded with the original system, yields an output equal to the input of the first signal E.g. the CT system is invertible: y(t) = 2x(t) because w(t) = 0.5*y(t) recovers the original signal x(t) E.g. the CT system is not-invertible y(t) = x2(t) because distinct input signals lead to the same output signal Widely used as a design principle: Encryption, decryption System control, where the reference signal is input EE-2027 SaS, L3:

System Structures Systems are generally composed of components (sub-systems). We can use our understanding of the components and their interconnection to understand the operation and behaviour of the overall system Series/cascade Parallel Feedback System 1 System 2 x y System 1 System 2 x y + System 1 x y + System 2 EE-2027 SaS, L3:

Systems In Matlab A system transforms a signal into another signal. In Matlab a discrete signal is represented as an indexed vector. Therefore, a matrix or a for loop can be used to transform one vector into another Example (DT first order system) >> n = 0:10; >> x = ones(size(n)); >> x(1) = 0; >> y(1) = 0; >> for i=2:11 y(i) = (y(i-1) + x(i))/2; end >> plot(n, x, ‘x’, n, y, ‘.’) EE-2027 SaS, L3:

System Libraries in Simulink EE-2027 SaS, L3:

Example 1: Voltage Simulation Click File-New to create a new workspace, and drag and drop objects from the library onto the workspace. Selecting Simulation-Start from the pull down menu will run the dynamic simulation. Click on the blocks to view the data or alter the run-time parameters EE-2027 SaS, L3:

Example 2: Mass-Spring Simulation Mass-spring system demonstration in Simulink Square wave input signal, oscillatory output signal EE-2027 SaS, L3:

Lecture 3: Summary Whenever we use an equation for a system: CT – differential DT – difference The parameters, order and structure represent the system There are a large class of systems that are linear, time invariant (LTI), these will primarily be studied on this course. Other system properties such as causality, stability, memory and invertibility will be dealt with on a case by case basis Matlab and Simulink are standard tools for analysing, designing, simulating complex systems. Used for system modelling and control design EE-2027 SaS, L3:

Lecture 3: Exercises SaS OW Q1-27 to Q1-31 Matlab and Simulink 1) Enter the DT first-order system described on Slide 15 into Matlab and check the response 2) Create the CT first-order system described on Slide 17 into Simulink and check the response 3) Run the Mass-Spring simulation mentioned on Slide 18 (this is one of Simulink’s in-built demonstration). Have a look at how each of the blocks are configured EE-2027 SaS, L3: