COMP 5138 Relational Database Management Systems Semester 2, 2007 Lecture 5A Relational Algebra.

Slides:



Advertisements
Similar presentations
Relational Algebra Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY courtesy of Joe Hellerstein for some slides.
Advertisements

Relational Algebra Rohit Khokher. Relational Algebra Set Oriented Operations UnionIntersectionDifference Cartesian Product Relation Oriented Operations.
D ATABASE S YSTEMS I R ELATIONAL A LGEBRA. 22 R ELATIONAL Q UERY L ANGUAGES Query languages (QL): Allow manipulation and retrieval of data from a database.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Relational Algebra Chapter 4, Part A Modified by Donghui Zhang.
INFS614, Fall 08 1 Relational Algebra Lecture 4. INFS614, Fall 08 2 Relational Query Languages v Query languages: Allow manipulation and retrieval of.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Relational Algebra Chapter 4.
Relational Algebra Content based on Chapter 4 Database Management Systems, (Third Edition), by Raghu Ramakrishnan and Johannes Gehrke. McGraw Hill, 2003.
1 Relational Algebra & Calculus. 2 Relational Query Languages  Query languages: Allow manipulation and retrieval of data from a database.  Relational.
By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in effect, increases the mental.
CMPT 354, Simon Fraser University, Fall 2008, Martin Ester 52 Database Systems I Relational Algebra.
By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in effect, increases the mental.
By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in effect, increases the mental.
FALL 2004CENG 351 File Structures and Data Managemnet1 Relational Algebra.
By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in effect, increases the mental.
1 Relational Algebra. 2 Relational Query Languages Query languages: Allow manipulation and retrieval of data from a database. Relational model supports.
Lecture 4: Relational algebra
CS 4432query processing1 CS4432: Database Systems II.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Relational Algebra Chapter 4, Part A.
Relational Algebra Chapter 4 - part I. 2 Relational Query Languages  Query languages: Allow manipulation and retrieval of data from a database.  Relational.
Introduction to Database Systems 1 Relational Algebra Relational Model: Topic 3.
Relational Algebra. Relational Query Languages n Query = “retrieval program” n Language examples: ù Theoretical : 1. Relational Algebra 2. Relational.
By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in effect, increases the mental.
1 Relational Algebra and Calculus Yanlei Diao UMass Amherst Feb 1, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke.
Rutgers University Relational Algebra 198:541 Rutgers University.
Relational Algebra Chapter 4 - part I. 2 Relational Query Languages  Query languages: Allow manipulation and retrieval of data from a database.  Relational.
CSCD343- Introduction to databases- A. Vaisman1 Relational Algebra.
Relational Algebra.
Relational Algebra, R. Ramakrishnan and J. Gehrke (with additions by Ch. Eick) 1 Relational Algebra.
1 Relational Algebra and Calculus Chapter 4. 2 Relational Query Languages  Query languages: Allow manipulation and retrieval of data from a database.
Lecture 05 Structured Query Language. 2 Father of Relational Model Edgar F. Codd ( ) PhD from U. of Michigan, Ann Arbor Received Turing Award.
M Taimoor Khan Course Objectives 1) Basic Concepts 2) Tools 3) Database architecture and design 4) Flow of data (DFDs)
1 Relational Algebra. 2 Relational Query Languages v Query languages: Allow manipulation and retrieval of data from a database. v Relational model supports.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Relational Algebra.
Relational Algebra  Souhad M. Daraghma. Relational Query Languages Query languages: Allow manipulation and retrieval of data from a database. Relational.
CS 4432query processing1 CS4432: Database Systems II Lecture #11 Professor Elke A. Rundensteiner.
1 Relational Algebra & Calculus Chapter 4, Part A (Relational Algebra)
1 Relational Algebra and Calculas Chapter 4, Part A.
1.1 CAS CS 460/660 Introduction to Database Systems Relational Algebra.
Database Management Systems 1 Raghu Ramakrishnan Relational Algebra Chpt 4 Xin Zhang.
Relational Algebra.
ICS 321 Fall 2011 The Relational Model of Data (i) Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 8/29/20111Lipyeow.
1 Relational Algebra Chapter 4, Sections 4.1 – 4.2.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Database Management Systems Chapter 4 Relational Algebra.
Database Management Systems 1 Raghu Ramakrishnan Relational Algebra Chpt 4 Xin Zhang.
CSCD34-Data Management Systems - A. Vaisman1 Relational Algebra.
Database Management Systems, R. Ramakrishnan1 Relational Algebra Module 3, Lecture 1.
CMPT 258 Database Systems Relational Algebra (Chapter 4)
Relational Algebra p BIT DBMS II.
Database Management Systems 1 Raghu Ramakrishnan Relational Algebra Chpt 4 Jianping Fan.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Relational Algebra Chapter 4, Part A.
1 CS122A: Introduction to Data Management Lecture #7 Relational Algebra I Instructor: Chen Li.
Relational Algebra. CENG 3512 Relational Query Languages Query languages: Allow manipulation and retrieval of data from a database. Relational model supports.
Relational Algebra & Calculus
Database Systems (資料庫系統)
CS4432: Database Systems II
Relational Algebra Chapter 4 1.
Relational Algebra Chapter 4, Part A
Relational Algebra 461 The slides for this text are organized into chapters. This lecture covers relational algebra, from Chapter 4. The relational calculus.
Database Systems 10/13/2010 Lecture #4.
Relational Algebra.
Relational Algebra 1.
LECTURE 3: Relational Algebra
Relational Algebra Chapter 4 1.
Relational Algebra Chapter 4 - part I.
Relational Algebra Chapter 4, Sections 4.1 – 4.2
CENG 351 File Structures and Data Managemnet
Relational Algebra & Calculus
Relational Algebra Chapter 4 - part I.
Relational Algebra Chpt 4a Xintao Wu Raghu Ramakrishnan
Presentation transcript:

COMP 5138 Relational Database Management Systems Semester 2, 2007 Lecture 5A Relational Algebra

22 L3 Relational Data Model Overview There are many tasks that can be understood as calculating some relation by combining the information in one or more relation instances Relational algebra defines some operators that can be used to express a calculation like that A central insight: a query that extracts information can be seen as calculating a relation from the current state of the database

33 L3 Relational Data Model Relational Algebra Users request information from a database using a query language Six basic and several additional operators Basic operations: Selection ( ) Selects a subset of rows from relation. Projection ( ) Extracts only desired columns from relation. Cross-product ( ) Allows us to combine two relations. Set-difference ( ) Tuples in reln. 1, but not in reln. 2. Union ( ) Tuples in reln. 1 or in reln. 2. Rename ( ) Allows us to rename one field to another name. Additional operations: Intersection, join, division: Not essential, but (very!) useful. The operators take one or more relations as inputs and give a new relation as result X _

44 L3 Relational Data Model Running Example Instance R1 of reserves Instance S1 of sailors “Sailors” and “Reserves” relations for our examples. Instance S2 of sailors

55 L3 Relational Data Model Projection sname, rating (S2) age Deletes attributes that are not in projection list. Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation. (S2)

66 L3 Relational Data Model Selection Selects rows that satisfy selection condition. rating > 8 (S2) Result relation can be the input for another relational algebra operation! (Operator composition.) sname, rating ( ) rating > 8 (S2)

77 L3 Relational Data Model Set Operation All of these operations take two input relations Same number of fields. `Corresponding’ fields have the same type. Set Union R  S Definition: R U S = { t | t  R  t  S } Set Intersection R  S Definition: R  S = { t | t  R  t  S } Set Difference R - S Definition: R - S = { t | t  R  t  S } (S1) (S2) (S1) (S2) (S1) (S2) _

88 L3 Relational Data Model Cross-Product Each row of S1 is paired with each row of R1. Result schema has one field per field of S1 and R1, with field names `inherited’ if possible. Conflict: Both S1 and R1 have a field called sid. Sometimes called Cartesian product

99 L3 Relational Data Model Renaming Allows us to name, and therefore to refer to, the results of relational-algebra expressions. Allows us to refer to a relation by more than one name. Notation 1:  x (E) returns the expression E under the name X Notation 2:  x (A1, A2, …, An) (E) returns the result of expression E under the name X, and with the attributes renamed to A 1, A2, …., An. (assumes that the relational-algebra expression E has arity n) Example C( 1  sid1, 5  sid2) ( S1XR1)

1010 L3 Relational Data Model Joins Condition Join : Result schema same as that of cross-product. Fewer tuples than cross-product, might be able to compute more efficiently Sometimes called a theta-join.

1111 L3 Relational Data Model Joins Equi-Join: A special case of condition join where the condition c contains only equalities. Result schema similar to cross-product, but only one copy of fields for which equality is specified. Natural Join: Equijoin on all common fields.   aababaabab aaabbaaabb  ABCD R BDE S = ABCD R S E   aaaabaaaab   

1212 L3 Relational Data Model Division Not supported as a primitive operator, but useful for expressing queries like: Find sailors who have served on all boats. Let A have 2 fields, x and y; B have only field y: A/B = i.e., A/B contains all x tuples (sailors) such that for every y tuple (boat) in B, there is an xy tuple in A. Or: If the set of y values (boats) associated with an x value (sailor) in A contains all y values in B, the x value is in A/B. In general, x and y can be any lists of fields; y is the list of fields in B, and x y is the list of fields of A.

1313 L3 Relational Data Model Examples of Division A/B A B1 B2 B3 A/B1 A/B2 A/B3

1414 L3 Relational Data Model Equivalence Rules The following equivalence rules hold: Commutation rules 1.π A (  p ( R ) )   p ( π A ( R ) ) 2.R S  S R Association rule 1. R (S T)  (R S) T Idempotence rules 1. π A ( π B ( R ) )  π A ( R ) if A  B 2.  p1 (  p2 ( R ))   p1  p2 ( R ) Distribution rules 1. π A ( R  S )  π A ( R )  π A ( S ) 2.  P ( R  S )   P ( R )   P ( S ) 3.  P ( R S )   P (R) S if P only references R 4. π A,B (R S )  π A ( R ) π B ( S ) if join-attr. in (A  B) 5. R ( S  T )  ( R S )  ( R T ) These rules are the basis for the automatic optimisation of relational algebra expressions