Start Presentation October 11, 2012 3 rd Homework Solution In this homework problem, we wish to exercise the application of the algorithms by Pantelides.

Slides:



Advertisements
Similar presentations
Start Presentation November 8, 2012 Bond Graphs for Mechanical Systems We shall look today in a bit more detail at the modeling of 1D mechanical systems.
Advertisements

Start Presentation September 27, 2012 The Structural Singularity Removal Algorithm by Pantelides This lecture deals with a procedure that can be used to.
FIRST AND SECOND-ORDER TRANSIENT CIRCUITS
MA/CS 375 Fall MA/CS 375 Fall 2002 Lecture 18 Sit in your groups.
Numerical Algorithms Matrix multiplication
Start Presentation October 4, rd Homework Problem In this homework problem, we wish to exercise the application of the algorithms by Pantelides.
PHY 301: MATH AND NUM TECH Chapter 6: Eigenvalue Problems 1.Motivation 2.Differential Equations 3.Other Equations.
Chapter 9 Gauss Elimination The Islamic University of Gaza
Chapter 18 Direct Current Circuits. Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that.
Fundamentals of Circuits: Direct Current (DC)
Direct Current Circuits
Start of Presentation Mathematical Modeling of Physical Systems © Prof. Dr. François E. Cellier September 20, st Homework Problem We wish to analyze.
Start of Presentation Mathematical Modeling of Physical Systems © Prof. Dr. François E. Cellier Electrical CircuitsI This lecture discusses the mathematical.
François E. Cellier and Matthias Krebs
Lesson 7 Basic Laws of Electric Circuits Mesh Analysis.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 14 Elimination Methods.
1 AC Nodal and Mesh Analysis Discussion D11.1 Chapter 4 4/10/2006.
Start of Presentation Maple soft Conference 2006 The Need for Formulae Manipulation in the Object-oriented Modeling of Physical Systems François E. Cellier,
3.6 The Mesh-Current Method Figure 3.21 Illustrations of the concept of a mesh. A mesh is a circuit loop that does not enclose any elements The mesh currents.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 15 Solution of Systems of Equations.
Direct Current Circuits
Solving a System with Three Variables and Three Unknowns.
Chapter 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
FIRST ORDER TRANSIENT CIRCUITS
Chapter 18 Direct Current Circuits. Chapter 18 Objectives Compare emf v potential difference Construct circuit diagrams Open v Closed circuits Potential.
Computational Intelligence: Methods and Applications Lecture 31 Combinatorial reasoning, or learning from partial observations. Włodzisław Duch Dept. of.
Simpson Rule For Integration.
ME451 Kinematics and Dynamics of Machine Systems Numerical Solution of DAE IVP Newmark Method November 1, 2013 Radu Serban University of Wisconsin-Madison.
Chapter 25 Electric Circuits.
Lesson 13-1: Matrices & Systems Objective: Students will: State the dimensions of a matrix Solve systems using matrices.
RESISTIVE CIRCUITS MULTI NODE/LOOP CIRCUIT ANALYSIS.
Methods of Analysis Chapter 3. Introduction We are now prepared to apply Ohm’s law and Kirchhoff’s laws to develop two powerful techniques for circuit.
© 2005 Baylor University Slide 1 Fundamentals of Engineering Analysis EGR Adjoint Matrix and Inverse Solutions, Cramer’s Rule.
Introduction to Electrical Circuits Unit 17. Sources of emf  The source that maintains the current in a closed circuit is called a source of emf Any.
Chapter 28 Direct Current Circuits. Direct Current When the current in a circuit has a constant direction, the current is called direct current Most of.
Start of Presentation September 27, st Homework Problem We wish to analyze the following electrical circuit.
The second systematic technique to determine all currents and voltages in a circuit IT IS DUAL TO NODE ANALYSIS - IT FIRST DETERMINES ALL CURRENTS IN A.
General Methods of Network Analysis Node Analysis Mesh Analysis Loop Analysis Cutset Analysis State variable Analysis Non linear and time varying network.
Start of presentation September 27, 2012 Algebraic Loops and Structural Singularities The sorting algorithm, as it was demonstrated so far, does not always.
Differential Equations and Slope Fields 6.1. Differential Equations  An equation involving a derivative is called a differential equation.  The order.
“Kirchhoff's Rules” Abdulrajab Layagin. Who is Gustav Kirchhoff?  A German physicist who contributed to the fundamental understanding of electrical circuits.
KIRCHHOFF’S RULES. Junction rule. The sum of the magnitudes of the currents directed into a junction equals the sum of the magnitudes of the currents.
EGR 2201 Unit 9 First-Order Circuits  Read Alexander & Sadiku, Chapter 7.  Homework #9 and Lab #9 due next week.  Quiz next week.
Chapter 9 Gauss Elimination The Islamic University of Gaza
Series and Parallel Circuits
Start Presentation October 4, 2012 Efficient Solution of Equation Systems This lecture deals with the efficient mixed symbolic/numeric solution of algebraically.
Lesson 1.  Example 1. Use either elimination or the substitution method to solve each system of equations.  3x -2y = 7 & 2x +5y = 9  A. Using substitution.
Warm Up 1.Find the particular solution to the initial value problem 2.Find the general solution to the differential equation.
KITRC CIRCUIT & NETWORKS MADE BY AGNA PATEL:
Discussion D2.3 Chapter 2 Section 2-7
Direct Current Circuits
Basic Algebraic Applications
1-5 Equations Goals: Solve equations with one variable
Direct Current Circuits
FIRST AND SECOND-ORDER TRANSIENT CIRCUITS
Solving Linear Systems Algebraically
4th Homework Problem In this homework problem, we wish to exercise the tearing and relaxation methods by means of a slightly larger problem than that presented.
4th Homework Solution In this homework problem, we wish to exercise the tearing and relaxation methods by means of a slightly larger problem than that.
ELL100: INTRODUCTION TO ELECTRICAL ENG.
Equivalent State Equations
Warm Up Check to see if the point is a solution for the
L1-4 Algebra 2.
Algebra 1 Section 7.2.
The Mesh Current Method
Basic Laws of Electric Circuits
The Gauss Jordan method
Basic Laws of Electric Circuits
Multiply by 5/40 and sum with 2nd row
LOOP ANALYSIS The second systematic technique to determine all currents and voltages in a circuit IT IS DUAL TO NODE ANALYSIS - IT FIRST DETERMINES ALL.
Presentation transcript:

Start Presentation October 11, rd Homework Solution In this homework problem, we wish to exercise the application of the algorithms by Pantelides and Tarjan, as well as the tearing method. The problem deals with another simple electrical circuit.

Start Presentation October 11, 2012 Structural Singularity Pantelides Algorithm Tarjan Algorithm Tearing of Algebraic Loops Structure Diagram Solving of Coupled Equations

Start Presentation October 11, 2012 Structural Singularity i0i0 i R1 i R2 i R4 i C2 i R3 i C1 i C3 v0v0 v1v1 v2v2 v3v3 v4v4 Show that the circuit depicted on the left exhibits a structural singularity. To this end, find a complete set of equations in currents, potentials, and Voltages (ignoring the mesh equations), and draw the digraph of the resulting DAE system. Subsequently, color the digraph by use of the algorithm by Tarjan, and demonstrate that the system is indeed structurally singular. Explain the structural singularity by analyzing the mesh that is formed by the three capacitors.

Start Presentation October 11, : U 0 = f(t) 13: U 0 = v 1 – v 0 2: u R1 = R 1 · i R1 14: u R1 = v 1 – v 2 3: u R2 = R 2 · i R2 15: u R2 = v 2 – v 3 4: u R3 = R 3 · i R3 16: u R3 = v 3 – v 0 5: u R4 = R 4 · i R4 17: u R4 = v 3 – v 4 6: i C1 = C 1 · du C1 /dt 18: u C1 = v 2 – v 0 7: i C2 = C 2 · du C2 /dt 19: u C2 = v 2 – v 4 8: i C3 = C 3 · du C3 /dt 20: u C3 = v 4 – v 0 9: i 0 = i R1 21: v 0 = 0 10: i R1 = i C1 + i C2 + i R2 11: i R2 = i R3 + i R4 12: i C3 = i R4 + i C U 0 i 0 u R1 i R1 u R2 i R2 u R3 i R3 u R4 i R4 du C1 /dt i C1 du C2 /dt i C2 du C3 /dt i C3 v 0 v 1 v 2 v 3 v 4

Start Presentation October 11, : U 0 = f(t) 13: U 0 = v 1 – v 0 2: u R1 = R 1 · i R1 14: u R1 = v 1 – v 2 3: u R2 = R 2 · i R2 15: u R2 = v 2 – v 3 4: u R3 = R 3 · i R3 16: u R3 = v 3 – v 0 5: u R4 = R 4 · i R4 17: u R4 = v 3 – v 4 6: i C1 = C 1 · du C1 /dt 18: u C1 = v 2 – v 0 7: i C2 = C 2 · du C2 /dt 19: u C2 = v 2 – v 4 8: i C3 = C 3 · du C3 /dt 20: u C3 = v 4 – v 0 9: i 0 = i R1 21: v 0 = 0 10: i R1 = i C1 + i C2 + i R2 11: i R2 = i R3 + i R4 12: i C3 = i R4 + i C U 0 i 0 u R1 i R1 u R2 i R2 u R3 i R3 u R4 i R4 du C1 /dt i C1 du C2 /dt i C2 du C3 /dt i C3 v 0 v 1 v 2 v 3 v 4

Start Presentation October 11, : U 0 = f(t) 13: U 0 = v 1 – v 0 2: u R1 = R 1 · i R1 14: u R1 = v 1 – v 2 3: u R2 = R 2 · i R2 15: u R2 = v 2 – v 3 4: u R3 = R 3 · i R3 16: u R3 = v 3 – v 0 5: u R4 = R 4 · i R4 17: u R4 = v 3 – v 4 6: i C1 = C 1 · du C1 /dt 18: u C1 = v 2 – v 0 7: i C2 = C 2 · du C2 /dt 19: u C2 = v 2 – v 4 8: i C3 = C 3 · du C3 /dt 20: u C3 = v 4 – v 0 9: i 0 = i R1 21: v 0 = 0 10: i R1 = i C1 + i C2 + i R2 11: i R2 = i R3 + i R4 12: i C3 = i R4 + i C U 0 i 0 u R1 i R1 u R2 i R2 u R3 i R3 u R4 i R4 du C1 /dt i C1 du C2 /dt i C2 du C3 /dt i C3 v 0 v 1 v 2 v 3 v 4 Constraint equation

Start Presentation October 11, 2012 Pantelides Algorithm Apply the algorithm by Pantelides to the equation system found before, and determine the resulting DAE system that by now no longer exhibits any structural singularity. Find the structure incidence matrix of the resulting implicit DAE system.

Start Presentation October 11, : U 0 = f(t) 13: U 0 = v 1 – v 0 2: u R1 = R 1 · i R1 14: u R1 = v 1 – v 2 3: u R2 = R 2 · i R2 15: u R2 = v 2 – v 3 4: u R3 = R 3 · i R3 16: u R3 = v 3 – v 0 5: u R4 = R 4 · i R4 17: u R4 = v 3 – v 4 6: i C1 = C 1 · du C1 /dt 18: u C1 = v 2 – v 0 7: i C2 = C 2 · du C2 19: u C2 = v 2 – v 4 8: i C3 = C 3 · du C3 /dt 20: u C3 = v 4 – v 0 9: i 0 = i R1 21: v 0 = 0 10: i R1 = i C1 + i C2 + i R2 22: du C2 = dv 2 – dv 4 11: i R2 = i R3 + i R4 23: du C1 /dt = dv 2 – dv 0 12: i C3 = i R4 + i C2 24: du C3 /dt = dv 4 – dv 0 25: dv 0 = U 0 i 0 u R1 i R1 u R2 i R2 u R3 i R3 u R4 i R4 du C1 /dt i C1 du C2 i C2 du C3 /dt i C3 v 0 v 1 v 2 v 3 v 4 u C2 dv 0 dv 2 dv 4

Start Presentation October 11, 2012 S =

Start Presentation October 11, 2012 Algorithm by Tarjan Draw the digraph of the resulting DAE system, and color it by use of the algorithm by Tarjan. The colored digraph symbolizes a partially sorted equation system, which however still contains a large algebraic loop. Write down the partially sorted equation system. Find the structure incidence matrix of the partially sorted equation system. This is now in block lower triangular form ( BLT-Form).

Start Presentation October 11, : U 0 = f(t) 03: U 0 = v 1 – v 0 09: u R1 = R 1 · i R1 08: u R1 = v 1 – v 2 3: u R2 = R 2 · i R2 15: u R2 = v 2 – v 3 4: u R3 = R 3 · i R3 16: u R3 = v 3 – v 0 5: u R4 = R 4 · i R4 17: u R4 = v 3 – v 4 6: i C1 = C 1 · du C1 /dt 04: u C1 = v 2 – v 0 7: i C2 = C 2 · du C2 06: u C2 = v 2 – v 4 8: i C3 = C 3 · du C3 /dt 05: u C3 = v 4 – v 0 25: i 0 = i R1 02: v 0 = 0 10: i R1 = i C1 + i C2 + i R2 22: du C2 = dv 2 – dv 4 11: i R2 = i R3 + i R4 23: du C1 /dt = dv 2 – dv 0 12: i C3 = i R4 + i C2 24: du C3 /dt = dv 4 – dv 0 07: dv 0 = U 0 i 0 u R1 i R1 u R2 i R2 u R3 i R3 u R4 i R4 du C1 /dt i C1 du C2 i C2 du C3 /dt i C3 v 0 v 1 v 2 v 3 v 4 u C2 dv 0 dv 2 dv 4

Start Presentation October 11, 2012 S =

Start Presentation October 11, 2012 Tearing of the Algebraic Loop Find appropriate tearing variables using the following heuristics: In the digraph, determine those equations with the largest number of unknowns. For every one of these equations, find those unknowns that show up most frequently in the not yet used equations. For every one of these variables, determine how many additional equations can be made causal if they are assumed known. Choose the one variable as the next tearing variable, which allows to make the largest number of additional equations causal.

Start Presentation October 11, st tearing variable Selection of tearing variables: Equations: (all with 3 variables each) i R2 i C1 i C2 i R2 i R3 i R4 i C2 i C3 du C2 dv 2 dv 4 3 eq. 2 eq. 3 eq. 2 eq. 3 eq. 2 eq.

Start Presentation October 11, : U 0 = f(t) 03: U 0 = v 1 – v 0 09: u R1 = R 1 · i R1 08: u R1 = v 1 – v 2 3: u R2 = R 2 · i R2 15: u R2 = v 2 – v 3 4: u R3 = R 3 · i R3 16: u R3 = v 3 – v 0 5: u R4 = R 4 · i R4 17: u R4 = v 3 – v 4 6: i C1 = C 1 · du C1 /dt 04: u C1 = v 2 – v 0 7: i C2 = C 2 · du C2 06: u C2 = v 2 – v 4 8: i C3 = C 3 · du C3 /dt 05: u C3 = v 4 – v 0 25: i 0 = i R1 02: v 0 = 0 10: i R1 = i C1 + i C2 + i R2 22: du C2 = dv 2 – dv 4 10: i R2 = i R3 + i R4 23: du C1 /dt = dv 2 – dv 0 12: i C3 = i R4 + i C2 24: du C3 /dt = dv 4 – dv 0 07: dv 0 = U 0 i 0 u R1 i R1 u R2 i R2 u R3 i R3 u R4 i R4 du C1 /dt i C1 du C2 i C2 du C3 /dt i C3 v 0 v 1 v 2 v 3 v 4 u C2 dv 0 dv 2 dv 4

Start Presentation October 11, : U 0 = f(t) 03: U 0 = v 1 – v 0 09: u R1 = R 1 · i R1 08: u R1 = v 1 – v 2 11: u R2 = R 2 · i R2 12: u R2 = v 2 – v 3 15: u R3 = R 3 · i R3 13: u R3 = v 3 – v 0 16: u R4 = R 4 · i R4 14: u R4 = v 3 – v 4 6: i C1 = C 1 · du C1 /dt 04: u C1 = v 2 – v 0 7: i C2 = C 2 · du C2 06: u C2 = v 2 – v 4 8: i C3 = C 3 · du C3 /dt 05: u C3 = v 4 – v 0 25: i 0 = i R1 02: v 0 = 0 10: i R1 = i C1 + i C2 + i R2 22: du C2 = dv 2 – dv 4 10: i R2 = i R3 + i R4 23: du C1 /dt = dv 2 – dv 0 12: i C3 = i R4 + i C2 24: du C3 /dt = dv 4 – dv 0 07: dv 0 = U 0 i 0 u R1 i R1 u R2 i R2 u R3 i R3 u R4 i R4 du C1 /dt i C1 du C2 i C2 du C3 /dt i C3 v 0 v 1 v 2 v 3 v 4 u C2 dv 0 dv 2 dv 4

Start Presentation October 11, nd tearing variable Selection of tearing variables: Equations:22 (the only equation with 3 unknowns) du C2 dv 2 dv 4 2 eq.

Start Presentation October 11, : U 0 = f(t) 03: U 0 = v 1 – v 0 09: u R1 = R 1 · i R1 08: u R1 = v 1 – v 2 11: u R2 = R 2 · i R2 12: u R2 = v 2 – v 3 15: u R3 = R 3 · i R3 13: u R3 = v 3 – v 0 16: u R4 = R 4 · i R4 14: u R4 = v 3 – v 4 6: i C1 = C 1 · du C1 /dt 04: u C1 = v 2 – v 0 7: i C2 = C 2 · du C2 06: u C2 = v 2 – v 4 8: i C3 = C 3 · du C3 /dt 05: u C3 = v 4 – v 0 25: i 0 = i R1 02: v 0 = 0 10: i R1 = i C1 + i C2 + i R2 17: du C2 = dv 2 – dv 4 10: i R2 = i R3 + i R4 23: du C1 /dt = dv 2 – dv 0 12: i C3 = i R4 + i C2 24: du C3 /dt = dv 4 – dv 0 07: dv 0 = 0 U 0 i 0 u R1 i R1 u R2 i R2 u R3 i R3 u R4 i R4 du C1 /dt i C1 du C2 i C2 du C3 /dt i C3 v 0 v 1 v 2 v 3 v 4 u C2 dv 0 dv 2 dv

Start Presentation October 11, : U 0 = f(t) 03: U 0 = v 1 – v 0 09: u R1 = R 1 · i R1 08: u R1 = v 1 – v 2 11: u R2 = R 2 · i R2 12: u R2 = v 2 – v 3 15: u R3 = R 3 · i R3 13: u R3 = v 3 – v 0 16: u R4 = R 4 · i R4 14: u R4 = v 3 – v 4 21: i C1 = C 1 · du C1 /dt 04: u C1 = v 2 – v 0 18: i C2 = C 2 · du C2 06: u C2 = v 2 – v 4 22: i C3 = C 3 · du C3 /dt 05: u C3 = v 4 – v 0 25: i 0 = i R1 02: v 0 = 0 19: i R1 = i C1 + i C2 + i R2 17: du C2 = dv 2 – dv 4 10: i R2 = i R3 + i R4 23: du C1 /dt = dv 2 – dv 0 20: i C3 = i R4 + i C2 24: du C3 /dt = dv 4 – dv 0 07: dv 0 = 0 U 0 i 0 u R1 i R1 u R2 i R2 u R3 i R3 u R4 i R4 du C1 /dt i C1 du C2 i C2 du C3 /dt i C3 v 0 v 1 v 2 v 3 v 4 u C2 dv 0 dv 2 dv

Start Presentation October 11, 2012 U 0 i 0 u R1 i R1 u R2 i R2 u R3 i R3 u R4 i R4 du C1 /dt i C1 du C2 i C2 du C3 /dt i C3 v 0 v 1 v 2 v 3 v 4 u C2 dv 0 dv 2 dv : U 0 = f(t) 14: u R4 = v 3 – v 4 02: v 0 = 0 15: i R3 = u R3 /R 3 03: v 1 = U 0 – v 0 16: i R4 = u R4 /R 4 04: v 2 = u C1 – v 0 17: du C2 = dv 2 – dv 4 05: v 4 = u C3 – v 0 18: i C2 = C 2 · du C2 06: u C2 = v 2 – v 4 19: i C1 = i R1 – i C2 – i R2 07: dv 0 = 0 20: i C3 = i R4 + i C2 08: u R1 = v 1 – v 2 21: du C1 /dt = i C1 /C 1 09: i R1 = u R1 /R 1 22: du C3 /dt = i C3 /C 3 10: i R2 = i R3 + i R4 23: dv 2 = du C1 /dt – dv 0 11: u R2 = R 2 · i R2 24: dv 4 = du C3 /dt – dv 0 12: v 3 = v 2 – u R2 25: i 0 = i R1 13: u R3 = v 3 – v 0

Start Presentation October 11, 2012 Structure Diagram Draw the structure diagram of the causalized algebraic loop. It can be seen that two tearing variables are needed to make all equations of the loop causal. The two tearing variables decouple the equation system in such a way that there result two separate equation systems in one tearing variable each (this is not always the case, but it happens in the given example). Find the structure incidence matrix of the fully causalized DAE system. This now has two diagonal blocks of smaller sizes.

Start Presentation October 11, 2012 du C3 /dt dv 4 i C2 i C3 du C2 du C1 /dt dv 2 i C1 i R2 u R2 v3v3 u R3 i R3 i R4 u R4 Algebraic Loop 1 st tearing variable 2 nd tearing variable

Start Presentation October 11, 2012 S =

Start Presentation October 11, 2012 Solving the Coupled Equations Solve the two equation systems symbolically, and replace the residual equations of the equation system by the so found explicit equations. Draw the digraph of the once more modified equation system, and color it by use of the algorithm by Tarjan. Determine the resulting structure incidence matrix. This is now in lower triangular form.

Start Presentation October 11, : U 0 = f(t) 14: u R4 = v 3 – v 4 02: v 0 = 0 15: i R3 = u R3 /R 3 03: v 1 = U 0 – v 0 16: i R4 = u R4 /R 4 04: v 2 = u C1 – v 0 17: du C2 = dv 2 – dv 4 05: v 4 = u C3 – v 0 18: i C2 = C 2 · du C2 06: u C2 = v 2 – v 4 19: i C1 = i R1 – i C2 – i R2 07: dv 0 = 0 20: i C3 = i R4 + i C2 08: u R1 = v 1 – v 2 21: du C1 /dt = i C1 /C 1 09: i R1 = u R1 /R 1 22: du C3 /dt = i C3 /C 3 10: i R2 = i R3 + i R4 23: dv 2 = du C1 /dt – dv 0 11: u R2 = R 2 · i R2 24: dv 4 = du C3 /dt – dv 0 12: v 3 = v 2 – u R2 25: i 0 = i R1 13: u R3 = v 3 – v 0 i R2 = i R3 + i R4 = u R3 /R 3 + u R4 /R 4 = (v 3 – v 0 )/R 3 + (v 3 – v 4 )/R 4 = (R 3 + R 4 )/(R 3 ·R 4 ) v 3 – v 0 /R 3 – v 4 /R 4 = (R 3 + R 4 )/(R 3 ·R 4 ) · (v 2 – u R2 ) – v 0 /R 3 – v 4 /R 4 = – (R 3 + R 4 )/(R 3 ·R 4 ) · u R2 + (R 3 + R 4 )/(R 3 ·R 4 ) · v 2 – v 0 /R 3 – v 4 /R 4 = – R 2 · (R 3 + R 4 )/(R 3 ·R 4 ) · i R2 + (R 3 + R 4 )/(R 3 ·R 4 ) · v 2 – v 0 /R 3 – v 4 /R 4 i R2 = (R 3 + R 4 ) · v 2 – R 4 · v 0 – R 3 · v 4 R 2 ·R 3 + R 2 ·R 4 + R 3 ·R 4 

Start Presentation October 11, 2012 du C2 = dv 2 – dv 4 = (du C1 /dt – dv 0 ) – (du C3 /dt – dv 0 ) = du C1 /dt – du C3 /dt = i C1 /C 1 – i C3 /C 3 = (i R1 – i C2 – i R2 )/C 1 – (i R4 + i C2 )/C 3 = – (C 1 + C 3 )/(C 1 · C 3 ) · i C2 + (i R1 – i R2 )/C 1 – i R4 /C 3 = – C 2 · (C 1 + C 3 )/(C 1 · C 3 ) · du C2 + (i R1 – i R2 )/C 1 – i R4 /C 3 01: U 0 = f(t) 14: u R4 = v 3 – v 4 02: v 0 = 0 15: i R3 = u R3 /R 3 03: v 1 = U 0 – v 0 16: i R4 = u R4 /R 4 04: v 2 = u C1 – v 0 17: du C2 = dv 2 – dv 4 05: v 4 = u C3 – v 0 18: i C2 = C 2 · du C2 06: u C2 = v 2 – v 4 19: i C1 = i R1 – i C2 – i R2 07: dv 0 = 0 20: i C3 = i R4 + i C2 08: u R1 = v 1 – v 2 21: du C1 /dt = i C1 /C 1 09: i R1 = u R1 /R 1 22: du C3 /dt = i C3 /C 3 10: i R2 = i R3 + i R4 23: dv 2 = du C1 /dt – dv 0 11: u R2 = R 2 · i R2 24: dv 4 = du C3 /dt – dv 0 12: v 3 = v 2 – u R2 25: i 0 = i R1 13: u R3 = v 3 – v 0 du C2 = C 3 · (i R1 – i R2 ) – C 1 · i R4 C 1 ·C 2 + C 1 ·C 3 + C 2 ·C 3 

Start Presentation October 11, : u R4 = v 3 – v 4 15: i R3 = u R3 /R 3 16: i R4 = u R4 /R 4 17: 18: i C2 = C 2 · du C2 19: i C1 = i R1 – i C2 – i R2 20: i C3 = i R4 + i C2 21: du C1 /dt = i C1 /C 1 22: du C3 /dt = i C3 /C 3 23: dv 2 = du C1 /dt – dv 0 24: dv 4 = du C3 /dt – dv 0 25: i 0 = i R1 01: U 0 = f(t) 02: v 0 = 0 03: v 1 = U 0 – v 0 04: v 2 = u C1 – v 0 05: v 4 = u C3 – v 0 06: u C2 = v 2 – v 4 07: dv 0 = 0 08: u R1 = v 1 – v 2 09: i R1 = u R1 /R 1 10: 11: u R2 = R 2 · i R2 12: v 3 = v 2 – u R2 13: u R3 = v 3 – v 0 i R2 = (R 3 + R 4 ) · v 2 – R 4 · v 0 – R 3 · v 4 R 2 ·R 3 + R 2 ·R 4 + R 3 ·R 4 du C2 = C 3 · (i R1 – i R2 ) – C 1 · i R4 C 1 ·C 2 + C 1 ·C 3 + C 2 ·C 3

Start Presentation October 11, 2012 U 0 i 0 u R1 i R1 u R2 i R2 u R3 i R3 u R4 i R4 du C1 /dt i C1 du C2 i C2 du C3 /dt i C3 v 0 v 1 v 2 v 3 v 4 u C2 dv 0 dv 2 dv U 0 i 0 u R1 i R1 u R2 i R2 u R3 i R3 u R4 i R4 du C1 /dt i C1 du C2 i C2 du C3 /dt i C3 v 0 v 1 v 2 v 3 v 4 u C2 dv 0 dv 2 dv

Start Presentation October 11, 2012 S =