Take-home postcard. Basis set: Atomic orbitals s p d f SIESTA: Strictly localized (zero beyond cut-off radius)

Slides:



Advertisements
Similar presentations
How to run with the same pseudos in S IESTA and A BINIT Objectives Run examples with the same pseudos (same decomposition in local part and Kleinman-Bylander.
Advertisements

Javier Junquera Exercises on basis set generation Full control on the definition of the basis set functions: the PAO.Basis block.
Javier Junquera Exercises on basis set generation Convergence of the basis set with size.
Javier Junquera Exercises on basis set generation Control of the range of the second-ς orbital: the split norm.
Javier Junquera Exercises on basis set generation 1. The default basis set.
Javier Junquera Exercises on basis set generation Control of the range: the energy shift.
The H 2 molecule without convergence studies Objectives: - the (pseudo)total energy - the bond length r HH Acknowledgment: exercise inspired on the first.
Modelling of Defects DFT and complementary methods
Daniel Sánchez-Portal
Quantum Theory of Solids
Systematics for realistic proyects: from quick & dirty to converged calculations José M. Soler and Alberto García.
Pseudopotentials and Basis Sets
Relaxation and Molecular Dynamics
Javier Junquera Code structure: calculation of matrix elements of H and S. Direct diagonalization José M. Soler = N  N N  1.
CHE Inorganic, Physical & Solid State Chemistry Advanced Quantum Chemistry: lecture 4 Rob Jackson LJ1.16,
DFT – Practice Simple Molecules & Solids [based on Chapters 5 & 2, Sholl & Steckel] Input files Supercells Molecules Solids.
Recap on Basis Sets Pablo Ordejon ICMAB-CSIC. Basis Sets in SIESTA Generated from the solution of the FREE ATOM (with the pseudopotential) Finite range:
BDT between Au leads Víctor García Suárez. Outline 1) Experiment 2) Previous calculations 3) Electronic and transport properties 4) Other experiments.
Transport Calculations with TranSIESTA
Correlated ab Initio Methods. Goal: select the most accurate calculation that is computationally feasible for a given molecular system Model chemistry:
Javier Junquera Atomic orbitals of finite range as basis sets.
SpiDME meeting, Nijmegen, May 2007 Stefano Sanvito and Nadjib Baadji Computational Spintronics Group School of Physics and CRANN, Trinity College.
Ab Initio Total-Energy Calculations for Extremely Large Systems: Application to the Takayanagi Reconstruction of Si(111) Phys. Rev. Lett., Vol. 68, Number.
1 Motivation (Why is this course required?) Computers –Human based –Tube based –Solid state based Why do we need computers? –Modeling Analytical- great.
Full first-principles simulations on 180º stripe domains in realistic ferroelectric capacitors Pablo Aguado-Puente Javier Junquera.
How to optimize automatically the parameters that determine the quality of the basis Javier Junquera Alberto García.
FUNDAMENTALS The quantum-mechanical many-electron problem and Density Functional Theory Emilio Artacho Department of Earth Sciences University of Cambridge.
Introduction to run Siesta
Javier Junquera Exercises on basis set generation Increasing the angular flexibility: polarization orbitals.
Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP DFT Calculations.
Practical quantum Monte Carlo calculations: QWalk
Norm-conserving pseudopotentials and basis sets in electronic structure calculations Javier Junquera Universidad de Cantabria.
The Nuts and Bolts of First-Principles Simulation Durham, 6th-13th December : DFT Plane Wave Pseudopotential versus Other Approaches CASTEP Developers’
Introduction to input & output files
Javier Junquera Code structure: calculation of matrix elements of H and S. Direct diagonalization José M. Soler = N  N N  1.
The H 2 O molecule: converging the size of the simulation box Objectives - study the convergence of the properties with the size of the unit cell.
1st Summer School in Theoretical and Computational Chemistry of Catalonia July 25-29, 2007 Directors: Feliu Maseras and Pere Alemany.
Calculation of matrix elements José M. Soler Universidad Autónoma de Madrid.
Introduction to run Siesta Javier Junquera Université de Liège.
Basic introduction to running Siesta Eduardo Anglada Siesta foundation-UAM-Nanotec
Université de Liège Numerical Atomic Orbitals: An efficient basis for Order-N ab-initio simulations Javier Junquera.
How to run SIESTA Víctor García Suárez (thanks to J. Junquera and J. Ferrer)
Systematic convergence for realistic projects Fast versus accurate Daniel Sánchez-Portal Centro de Física de Materiales, Centro Mixto CSIC- UPV/EHU,San.
- Compute and analyze the band structure of an ionic solid
Development of a full-potential self- consistent NMTO method and code Yoshiro Nohara and Ole Krogh Andersen.
Lecture 12. Basis Set Molecular Quantum Mechanics, Atkins & Friedman (4th ed. 2005), Ch Essentials of Computational Chemistry. Theories and Models,
The eggbox effect: converging the mesh cutoff Objectives - study the convergence of the energy and the forces with respect to the real space grid.
Comp. Mat. Science School 2001 Lecture 21 Density Functional Theory for Electrons in Materials Richard M. Martin Bands in GaAs Prediction of Phase Diagram.
Linear scaling fundamentals and algorithms José M. Soler Universidad Autónoma de Madrid.
TBPW: A Modular Framework for Pedagogical Electronic Structure Codes Todd D. Beaudet, Dyutiman Das, Nichols A. Romero, William D. Mattson, Jeongnim Kim.
PA4311 Quantum Theory of Solids Quantum Theory of Solids Mervyn Roy (S6) www2.le.ac.uk/departments/physics/people/mervynroy.
Optimization of Numerical Atomic Orbitals
Simulations of a ferroelectric slab under constrained electric displacement vacuum BaTiO3 vacuum Ba(O(1-x)Nx) Ba(O(1-x)Fx) Javier Junquera.
Linear scaling solvers based on Wannier-like functions P. Ordejón Institut de Ciència de Materials de Barcelona (CSIC)
Javier Junquera Introduction to atomistic simulation methods in condensed matter Alberto García Pablo Ordejón.
Introduction to the SIESTA method SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE University of Illinois at Urbana-Champaign, June 13-23, 2005 Some technicalities.
Pseudopotentials & TDDFT calculation
Javier Junquera How to compute the projected density of states (PDOS)
Quantum Chemistry in Molecular Modeling: Our Agenda Postulates, Schrödinger equation & examples (Ch. 2-8) Computational chemistry (Ch. 16) Hydrogen-like.
Plotting the charge density of bulk Si
Start. Technische Universität Dresden Physikalische Chemie Gotthard Seifert Tight-binding Density Functional Theory DFTB an approximate Kohn-Sham DFT.
First-Principles calculations of the structural and electronic properties of the high-K dielectric HfO 2 Kazuhito Nishitani 1,2, Patrick Rinke 2, Abdallah.
The Nuts and Bolts of First-Principles Simulation Durham, 6th-13th December : Testing Testing. Basic procedure to “validate” calculations CASTEP.
Advanced methods of molecular dynamics 1.Monte Carlo methods 2.Free energy calculations 3.Ab initio molecular dynamics 4.Quantum molecular dynamics 5.Trajectory.
How to prepare the interface between siesta and wannier90
Comp. Mat. Science School Electrons in Materials Density Functional Theory Richard M. Martin Electron density in La 2 CuO 4 - difference from sum.
2/23/2015PHY 752 Spring Lecture 171 PHY 752 Solid State Physics 11-11:50 AM MWF Olin 107 Plan for Lecture 17: Reading: Chapter 10 in MPM Ingredients.
The Siesta program for electronic structure simulations
Band structure of a cubic perovskite oxide:
Atomic orbitals of finite range
Presentation transcript:

Take-home postcard

Basis set: Atomic orbitals s p d f SIESTA: Strictly localized (zero beyond cut-off radius)

Effective potential for valence electrons Pseudopotential r (a.u.) V(r) The internal electrons do not participate in the chemical bond

All electronPseudopotential Muffin-Tin LAPW Plane waves Localized Orbitals Simple taxonomy of Ab-initio codes

Pseudopotential generation Number of k-points Electronic temperature XC functional: LDA, GGAs Harris functional vs SCF Spin polarization SCF convergence tolerance Supercell size (solid & vacuum) Geometry relaxation tolerance Basis set: Size (SZ, DZ, DZP...) Range (Shape) Real space mesh cutoff Things to keep in mind Plane-wave cutoff SIESTAPW codes Lab Apparatus

Basis Size Quick and dirty calculations Highly converged calculations Complete multiple-ζ + Polarization + Diffuse orbitals Minimal basis set (single- ζ; SZ) Depending on the required accuracy and available computational power + Basis Optimization

Easy setup with reasonable defaults NumberOfSpecies 1 number-of-atoms 2 LatticeConstant 5.43 Ang %block LatticeVectors %endblock LatticeVectors %block ChemicalSpeciesLabel 1 14 Si %endblock ChemicalSpeciesLabel AtomicCoordinatesFormat Fractional %block AtomicCoordinatesAndAtomicSpecies Si Si 2 %endblock AtomicCoordinatesAndAtomicSpecies

Simple level of specification PAO.Basis.Size SZPSIZE PAO.EnergyShift 150 meVRANGE PAO.SplitNorm 0.25SHAPE # MeshCutoff 200 Ry

%block PAO.Basis H n= E n= %endblock PAO.Basis # Grid.Cell.Sampling T Higher degree of control

Real-Space Grid Eggbox effect

Emilio Artacho (Cambridge University) Pablo Ordejón (ICMAB, Barcelona) José M. Soler (UAM, Madrid) Julian Gale (Curtin Inst. of Tech., Perth) Richard Martin (U. Illinois, Urbana) Javier Junquera (U. Cantabria, Santander) Daniel Sánchez-Portal (UPV, San Sebastián) Eduardo Anglada (Nanotec) Alberto García (ICMAB, Barcelona) The SIESTA Team