Efficient Discrete-Time Simulations of Continuous- Time Quantum Query Algorithms QIP 2009 January 14, 2009 Santa Fe, NM Rolando D. Somma Joint work with.

Slides:



Advertisements
Similar presentations
Computation, Quantum Theory, and You Scott Aaronson, UC Berkeley Qualifying Exam May 13, 2002.
Advertisements

Quantum Lower Bounds The Polynomial and Adversary Methods Scott Aaronson September 14, 2001 Prelim Exam Talk.
Quantum Software Copy-Protection Scott Aaronson (MIT) |
The Future (and Past) of Quantum Lower Bounds by Polynomials Scott Aaronson UC Berkeley.
Limitations of Quantum Advice and One-Way Communication Scott Aaronson UC Berkeley IAS Useful?
Quantum Search of Spatial Regions Scott Aaronson (UC Berkeley) Joint work with Andris Ambainis (U. Latvia)
Lower Bounds for Local Search by Quantum Arguments Scott Aaronson (UC Berkeley) August 14, 2003.
An Invitation to Quantum Complexity Theory The Study of What We Cant Do With Computers We Dont Have Scott Aaronson (MIT) QIP08, New Delhi BQP NP- complete.
Reductions Complexity ©D.Moshkovitz.
University of Strathclyde
University of Queensland
Quantum Walks, Quantum Gates, and Quantum Computers Andrew Hines P.C.E. Stamp [Palm Beach, Gold Coast, Australia]
Approximate List- Decoding and Hardness Amplification Valentine Kabanets (SFU) joint work with Russell Impagliazzo and Ragesh Jaiswal (UCSD)
prime factorization algorithm found by Peter Shor 1994
Resent Progress in Quantum Algorithms Min Zhang. Overview What is Quantum Algorithm Challenges to QA What motivates new QAs Quantum Theory in a Nutshell.
Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.
Department of Computer Science & Engineering University of Washington
High-Performance Simulation of Quantum Computation using QuIDDs George F. Viamontes, Manoj Rajagopalan, Igor L. Markov, and John P. Hayes Advanced Computer.
The Integration Algorithm A quantum computer could integrate a function in less computational time then a classical computer... The integral of a one dimensional.
Quantum Computing Joseph Stelmach.
Quantum Search Algorithms for Multiple Solution Problems EECS 598 Class Presentation Manoj Rajagopalan.
Anuj Dawar.
1 Recap (I) n -qubit quantum state: 2 n -dimensional unit vector Unitary op: 2 n  2 n linear operation U such that U † U = I (where U † denotes the conjugate.
Quantum Algorithms II Andrew C. Yao Tsinghua University & Chinese U. of Hong Kong.
Quantum Counters Smita Krishnaswamy Igor L. Markov John P. Hayes.
The Quantum 7 Dwarves Alexandra Kolla Gatis Midrijanis UCB CS
Simulating Physical Systems by Quantum Computers J. E. Gubernatis Theoretical Division Los Alamos National Laboratory.
Quantum random walks of interacting particles and the graph isomorphism problem Susan N. Coppersmith University of Wisconsin, Madison collaborators: Shiue-Yuan.
1 Introduction to Quantum Information Processing QIC 710 / CS 678 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 / QNC 3129 Lectures.
New quantum lower bound method, with applications to direct product theorems Andris Ambainis, U. Waterloo Robert Spalek, CWI, Amsterdam Ronald de Wolf,
Levinson’s Theorem for Scattering on Graphs DJ Strouse University of Southern California Andrew M. Childs University of Waterloo.
October 1 & 3, Introduction to Quantum Computing Lecture 2 of 2 Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 653 Course.
Lecture note 8: Quantum Algorithms
Algorithms Artur Ekert. Our golden sequence H H Circuit complexity n QUBITS B A A B B B B A # of gates (n) = size of the circuit (n) # of parallel units.
October 1 & 3, Introduction to Quantum Computing Lecture 1 of 2 Introduction to Quantum Computing Lecture 1 of 2
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Quantum Computer Simulation Alex Bush Matt Cole James Hancox Richard Inskip Jan Zaucha.
Quantum random walks – new method for designing quantum algorithms Andris Ambainis University of Latvia.
Quantum signal processing Aram Harrow UW Computer Science & Engineering
1 Dorit Aharonov Hebrew Univ. & UC Berkeley Adiabatic Quantum Computation.
Quantum random walks and quantum algorithms Andris Ambainis University of Latvia.
Nawaf M Albadia
Quantum algorithms vs. polynomials and the maximum quantum-classical gap in the query model.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 653 Lecture.
Forrelation: A Problem that Optimally Separates Quantum from Classical Computing.
Capabilities and limitations of quantum computers Michele Mosca 1 November 1999 ECC ’99.
Multipartite Entanglement and its Role in Quantum Algorithms Special Seminar: Ph.D. Lecture by Yishai Shimoni.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Quantum Computation Stephen Jordan. Church-Turing Thesis ● Weak Form: Anything we would regard as “computable” can be computed by a Turing machine. ●
Quantum Counterfeit Coin Problems Kazuo Iwama (Kyoto Univ.) Harumichi Nishimura (Osaka Pref. Univ.) Rudy Raymond (IBM Research - Tokyo) Junichi Teruyama.
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lectures
Quantum Computer Simulation Alex Bush Matt Cole James Hancox Richard Inskip Jan Zaucha.
Quantum Bits (qubit) 1 qubit probabilistically represents 2 states
Quantum Algorithms Oracles
Richard Cleve DC 3524 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Lecture.
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Lecture.
Quantum algorithms for evaluating Boolean formulas
Stochastic Streams: Sample Complexity vs. Space Complexity
Scott Aaronson (MIT) QIP08, New Delhi
Introduction to Quantum Computing Lecture 1 of 2
A low cost quantum factoring algorithm
Quantum Computing: What’s It Good For?
Quantum Computing Dorca Lee.
Quantum Computation and Information Chap 1 Intro and Overview: p 28-58
Classical Algorithms from Quantum and Arthur-Merlin Communication Protocols Lijie Chen MIT Ruosong Wang CMU.
Bayesian Deep Learning on a Quantum Computer
Quantum Computing Joseph Stelmach.
An approach to quantum Bayesian inference
Presentation transcript:

Efficient Discrete-Time Simulations of Continuous- Time Quantum Query Algorithms QIP 2009 January 14, 2009 Santa Fe, NM Rolando D. Somma Joint work with R. Cleve, D. Gottesman, M. Mosca, D. Yonge-Mallo

Query or Oracle Model of Computation Given a black-box (BB) BB For quantum algorithms, we consider a reversible version of BB: Want to learn a property of the N-tuple

Query or Oracle Model of Computation Oracle models are useful to obtain bounds in complexity and to make a fair comparisson between quantum and classical complexities Quantum algorithms in the oracle model U1U1 U2U2 U3U3 … Known unitaries Output gives some property of M M M M M M Examples * Shor’s factorization algorithm: Period-finding * Grover’s algorithm: find a marked element * Element Distinctness (Ambainis): finding two equal items

Continuous-Time Quantum Query Model of Computation 2- Time-dependent Driving Hamiltonian (known) 3- Evolution time (or total query cost) T>0 Output gives some property of M M M M M M 1- Query Hamiltonian Query cost fractional query * E. Farhi and S. Gutmann, Phys. Rev. A 57, 2043 (1998)

Motivations: Some quantum algorithms have been discovered in the continuous time query model “Exponential algorithmic speed up by quantum walk”, Childs et. al. [Proc. 35th ACM Symp. On Th. Comp. (2003)] Given: an oracle for the graph, and the name of the Entrance. Find the name of the Exit.

Motivations: Some quantum algorithms have been discovered in the continuous time query model “A Quantum Algorithm for Hamiltonian NAND tree”, Farhi, Goldstone, Gutmann quant-ph/ The query Hamiltonian is built from the adjacency matrix of a graph determined by the tree and the input state. It outputs the (binary) NAND in time N

Motivations: Is it possible to convert a quantum algorithm in the CT setting to a quantum algorithm in the more conventional query model? We present a method to do it at a cost Yes: It has been known(2) that this can be done with cost (2) D. Berry, G Ahokas, R. Cleve, and B.C. Sanders, Commun. Math. Phys. 270, 359 (2007) Q(1): Is the CT query model more powerful than the conventional query model? The actual implementation of a quantum algorithm in the CT setting may require knowledge on the query Hamiltonian which my not be an available resource. (1) C. Mochon, Hamiltonian Oracles, quant-ph/

MAIN RESULTS: Theorem: Any continuous-time T -query algorithm can be simulated by a discrete-time O ( T log T ) -query algorithm Corollary: Any lower bounds on discrete query complexity carry over to continuous query complexity within a log factor

Quantum Algorithm: Overview Step 1: Discretization using a (first order) Suzuki-Trotter approximation Step 2: Probabilistic simulation of fractional queries using (low-amplitude) controlled discrete queries 1 and 2 yield simulations of cost O(T 2 ) Step 3: Reduction on the amount of discrete queries by disregarding high- Hamming weight control-qubit states Step 4: Correction of errors due to step 2 The construction has many steps…

Step 1: Trotter-Suzuki Approximation Output gives some property of Algorithm in the CT setting M M M M M U1U1 U2U2 U3U3 … Step 1: Fidelity Still p>>T fractional queries M M M M M

Step 1: Trotter-Suzuki Approximation U1U1 U2U2 U3U3 … Step 1: Fidelity Still p>>T fractional queries M M M M M It doesn’t work in general…

Step 2: Probabilistic Simulation of Fractional Queries R1 R2 M Why do we want this conversion? The actual query cost is much lower than p. In step 3, we take advantage of this situation.

Step 2: Probabilistic Simulation of Fractional Queries U1U1 U2U2 U3U3 … M M M M M U1U1 U2U2 U3U3 … M M M M M R1 M M M R2 UpUp

Step 3: Reducing the amount of queries m queries For a segment of size m, it is likely to succeed There are 4T segments of that size in the total circuit We break the circuit in segments of size m : U1U1 U2U2 U3U3 … M M M M M R1 M M M R2 R1 M R2 …

Step 3: Reducing the amount of queries U1U1 U2U2 U3U3 … R1 M M M R2 m queries m Density of states Hamming weight Poisson distribution: Exponential decay UmUm

Step 3: Reducing the amount of queries U1U1 U2U2 U3U3 … R1 m queries m Density of states Average: A<1/2 Hamming weight cutoff At most k<<m full queries are needed !

Step 3: Reducing the amount of queries U1U1 U2U2 U3U3 … R1 m m full queries V2V2 V3V3 … R1 m VkVk full queries U1U1

Step 3: Reducing the amount of queries VjVj m Asks the value of the Hamming weight Implements the desired sequence of U’s V2V2 m Example: U2U2 U3U3 UmUm …

Step 3: Reducing the amount of queries We build Step 4 to error correct and increase the probability of success towards 1

Step 4: Error correction U1U1 U2U2 U3U3 … R1 m queries m M M M X 1- We undo the circuit: 2- We redo it:

Step 4: Error correction 1- We undo the circuit: 2- We redo it: Both, the undoing and redoing parts require the simulation of fractional queries with phases ± . Therefore, to reduce the total amount of queries, each of these operations have to be simulated probabilistically as explained in step 2. This yields a branching process, in which we iterate the error correction procedure. In the worst case, the undoing and redoing parts succeed (each) with probability bounded below by 3/4.

Step 4: Error correction The probability of success increases towards 1 exponentially fast with k

Step 4: Error correction Each of the circuits in the branching process (of size m or smaller) is simulated using the “trick” of step 3 to reduce the amount of queries Because the size of the tree associated to the branching process is a O(1) constant, to succeed with probability (say) 1-  3, we need to simulate O(T/  3 ) circuits ONLY.

Complexity of the simulation For fidelity 1- , our simulation requires full queries For classical input/output, the overall complexity is

Step 5: Conclusions! Improvements?