J. Mauricio López R. Centro Nacional de Metrología, CENAM.

Slides:



Advertisements
Similar presentations
Photoexcitation and Ionization of Cold Helium Atoms R. Jung 1,2 S. Gerlach 1,2 G. von Oppen 1 U. Eichmann 1,2 1 Technical University of Berlin 2 Max-Born-Institute.
Advertisements

MR TRACKING METHODS Dr. Dan Gamliel, Dept. of Medical Physics,
5 MeV Mott Measurement for CEBAF Operations group Joe Grames, Marcy Stutzman February 14 th, 2007 Sir Nevill F. Mott at the ceremony with his Nobel Prize.
Does instruction lead to learning?. A mini-quiz – 5 minutes 1.Write down the ground state wavefunction of the hydrogen atom? 2.What is the radius of the.
Centro Nacional de Metrología, CENAM, km 4.5 Carretera a los Cues, El Marques, Qro., J. Mauricio López R.
Heidelberg, 15 October 2005, Björn Hessmo, Laser-based precision spectroscopy and the optical frequency comb technique 1.
Matt Jones Precision Tests of Fundamental Physics using Strontium Clocks.
Jeff Johansen, Kevin Zack SRJC Spring 2011 Physics 43.
Laser cooling of molecules. 2 Why laser cooling (usually) fails for molecules Laser cooling relies on repeated absorption – spontaneous-emission events.
Visible Laser Light — Do Not Stare into Beam or View Directly with Optical Instruments Initials: __________Date: __________ CW power: ______________WType:
Structure of Atoms Rutherford's model of the atom was a great advance, however, it does not give an satisfactory treatment of the electrons. To improve.
Laser Cooling: Background Information The Doppler Effect Two observes moving relative to each other will observe the same wave with different frequency.
Centro Nacional de Metrología, CENAM, km 4.5 Carretera a los Cues, El Marques, Qro., J. Mauricio López R.
Quantum Computing with Trapped Ion Hyperfine Qubits.
Psy 8960, Fall ‘06 Introduction to MRI1 Introduction to MRI: NMR MRI - big picture –Neuroimaging alternatives –Goal: understanding neurall coding Electromagnetic.
Precision α Measurement: Atom Recoil Method Review Victor Acosta Physics 250: Atomic Physics Prof. Dima Budker.
Temperature scale Titan Superfluid He Ultracold atomic gases.
Chapter 19 NMR Spectroscopy. Introduction... Nuclear Magnetic Resonance Spectrometry is based on the measurement of absorption of electromagnetic radiation.
Psy 8960, Spring ’07 Introduction to MRI1 Introduction to MRI: NMR Physics reminders –Nuclei and atoms –Electromagnetic spectrum and Radio Frequency –Magnets.
Spin-motion coupling in atoms Cooling to motional ground states and Quantum logic spectroscopy.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
On the path to Bose-Einstein condensate (BEC) Basic concepts for achieving temperatures below 1 μK Author: Peter Ferjančič Mentors: Denis Arčon and Peter.
M. L. W. Thewalt, A. Yang, M. Steger, T. Sekiguchi, K. Saeedi, Dept. of Physics, Simon Fraser University, Burnaby BC, Canada V5A 1S6 T. D. Ladd, E. L.
Determination of Spin-Lattice Relaxation Time using 13C NMR
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
Magnetic Resonance Contributions to Other Sciences Norman F. Ramsey Harvard University Principles of Magnetic Resonance First experiments Extensions to.
Hydrogen atomic clocks J. Mauricio López R. División de Tiempo y Frecuencia.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
By Zach Redwing Life Facts Born on May 3 rd, 1902 Passed on January 7 th, 1984 Originated from Guebwiller in Alsace.
Determination of fundamental constants using laser cooled molecular ions.
Helium Spectroscopy Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**,
Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**, Roel Rozendaal,
Spectrumbeat signal characteristics of the used diode lasers for transversal cooling and trapping For stabilizing the diode lasers we use the mean of saturation.
High-performance Apparatus for Bose-Einstein Condensation of Rubidium Yoshio Torii Erik Streed Micah Boyd Gretchen Campbell Pavel Gorelik Dominik Schneble.
An Electron Trapped in A Potential Well Probability densities for an infinite well Solve Schrödinger equation outside the well.
NIST-F1 Cesium Fountain Atomic Clock The Primary Time and Frequency Standard for the United States f = 9,192,631,770.
Sarah Newton University of Oregon Applied Physics.
HIGH RESOLUTION ROTATIONAL SPECTROSCOPY STUDY OF THE ZEEMAN EFFECT IN THE 2 Π 1/2 MOLECULE PbF Alex Baum, Benjamin Murphy, Richard Mawhorter Trevor J.
441 Chem Introduction to Spectroscopy CH-1 1. Introduction to Spectroscopy Set of methods where interaction of electromagnetic radiation with chemical.
Beam Polarimetry Matthew Musgrave NPDGamma Collaboration Meeting Oak Ridge National Laboratory Oct. 15, 2010.
Physics 551 Presentation: Doppler Cooling Zane Shi Princeton University November 6 th, 2007.
Relativistic Quantum Theory of Microwave and Optical Atomic Clocks
Spin Precession Animation “DEMO”
Laser Cooling and Trapping Magneto-Optical Traps (MOTs) Far Off Resonant Traps (FORTs) Nicholas Proite.
Pablo Barberis Blostein y Marc Bienert
The Nature of Light: Its Wave Nature Light is a form of made of perpendicular waves, one for the electric field and one for the magnetic field All electromagnetic.
Electrons in Atoms: LIGHT & QUANTIZED ENERGY. Review and Background 400 B.C.E. – Democritus: proposed that all matter is composed of “atomos”
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
Daisuke Ando, * Susumu Kuma, ** Masaaki Tsubouchi,** and Takamasa Momose** *Kyoto University, JAPAN **The University of British Columbia, CANADA SPECTROSCOPY.
Optical Pumping Simulation of Copper for Beta-NMR Experiment Julie Hammond Boston University ISOLDE, CERN
Spectroscopy 3: Magnetic Resonance CHAPTER 15. Conventional nuclear magnetic resonance Energies of nuclei in magnetic fields Typical NMR spectrometer.
Collisional loss rate measurement of Cesium atoms in MOT Speaker : Wang guiping Date : December 25.
Rydberg atoms part 1 Tobias Thiele.
Laser manipulation of nuclear transitions: experiment.
PHL424: Nuclear angular momentum
Laser Cooling and Trapping
Optical Pumping I’M SO PUMPED FOR THIS!!! I also am quite excited By
Zeeman effect HFS and isotope shift
PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101
5-level Rabi-flopping Rabi-flopping of a 5-level Zeeman split atom:
Lasers and effects of magnetic field
Lecture 2: Magnetic Statics
Laboratoire de Physique des Lasers
Hydrogen relativistic effects II
Nuclear Magnetic Resonance
Nuclear Magnetic Resonance Spectroscopy
½ ¼ each 5th woman to wing Nobel prize in Chemistry.
Cold Atom project 12/02/2019.
Chapter 19 NMR Spectroscopy.
Presentation transcript:

J. Mauricio López R. Centro Nacional de Metrología, CENAM

Cs 133

The use of the atomic transitions as references to built atomic clocks was first proposed by I. Isaac Rabi from the Universidad of Columbia during the 1930s decaade. The Nobel Prize in Physics 1944 Isidore Isaac Rabi Nuclear magnetic resonance

Magnetic moment Classic approximation Static magnetic field Larmour frequency 00 z  Interaction between H and  Angular momentum evolution

zz Static magnetic field Larmour frequency 00   Rotating magnetic field perpendicular to H 0 Classic approximation

The Nobel Prize in Physics 1989 Norman F. Ramsey An improvement of the Rabi method was proposed by Norman Ramsey. His method is now used to built atomic clocks Nuclear magnetic resonance

z Static magnetic field Larmour frequency 00  Rotating magnetic field perpendicular to H 0  Applied in pulses! Classic approximation

Ramsey method Rabi method

Definition of the unit of time Electric  850nm Electron-nucleus Hz F’=5 F’=4 F’=3 F’=2 F’=4 F’=3 F’=4 F’=3 251MHz 200MHz 150MHz 1167MHz + Zeeman effect 11 subniveles 9 subniveles 7 subniveles 5 subniveles 9 subniveles 7 subniveles 9 subniveles 7 subniveles + INTERACTION ENERGY Spin-orbit 6 2 P 3/2 6 2 P 1/2 6 2 S 1/2  100GHz  894nm + Not a scale

CampoMagnético Constante (Campo C) Contenedor con Cesio 133 Cavidad de Ramsey Campo Magnético Inhomogéneo (Campo B) Campo Magnético Inhomogéneo (Campo A) Filamento Incandescente (Ionizador) Detector Generador de Microondas Lazo de amarre Vacío Ramsey Method

Alfred Kastler France École Normale Supérieure, Université de Paris Paris, France b.1902 d.1984 The Nobel Prize in Physics 1966 The descovery of the optical methods for the study of radio resonance in atoms was made by Alfred Kastler. Optical pumping

Cerca del visible Radiofrecuencia

Optical pumping in Cesio-133 Eléctrica  850nm Electrón Núcleo Hz F’=5 F’=4 F’=3 F’=2 F’=4 F’=3 F’=4 F’=3 251MHz 200MHz 150MHz 1167MHz + Efecto Zeeman 11 subniveles 9 subniveles 7 subniveles 5 subniveles 9 subniveles 7 subniveles 9 subniveles 7 subniveles + INTERACCION ENERGIA Espín-órbita 6 2 P 3/2 6 2 P 1/2 6 2 S 1/2  100GHz  894nm + No a escala

Campo Magnético Constante (Campo C) Contenedor con Cesio 133 Cavidad de Ramsey Generador de Microondas Lazo de amarre Láser de bombeo Láser de detección Fotodetector Vacío Ramsey method + optical pumping

Steven ChuClaude Cohen- Tannoudji William D. Phillips USAFranceUSA Stanford University Stanford, CA, USA Collège de France; École Normale Supérieure Paris, France National Institute of Standards and Technology Gaithersburg, MD, USA b.1948b.1933b.1948 The Nobel Prize in Physics 1997 During the 90´s decade Stephen Chu, Claude Cohen-Tannoudji y William Phyllips, among others, developed the techniques for the manipulation of atoms with ligth. Cold atoms

Doppler cooling Energy E2E2 E1E1 Laboratory reference frame F = 0 -  0 v

R = F + k·v + …  0 L = F - k·v + …<< 0 Atom´s reference frame 0 Doppler cooling Fuerza sobre el átomo como resultado del proceso de absorción/emisión de un fotón

Doppler cooling Fuerza 2kv/  1 Total force on the atom Friction type force

Lowest temperature achieved by eDoppler cooling Doppler cooling Cesium-133 Sodium h  6,6  J  s k B  1,3  J/K

Phys. Rev. Lett. 61, 169–172 (1988) [Issue 2 – 11 July 1988 ] Observation of atoms laser cooled below the Doppler limit Paul D. Lett, Richard N. Watts, Christoph I. Westbrook, and William D. Phillips Electricity Division, National Bureau of Standards, Gaithersburg, Maryland Phillip L. Gould Department of Physics, University of Connecticut, Storrs, Connecticut Harold J. Metcalf Department of Physics, State University of New York at Stony Brook, Stony Brook, New York Received 18 April 1988 We have measured the temperature of a gas of sodium atoms released from ``optical molasses'' to be as low as 43±20 µK. Surprisingly, this strongly violates the generally accepted theory of Doppler cooling which predicts a limit of 240 µK. To determine the temperature we used several complementary measurements of the ballistic motion of atoms released from the molasses. ©1988 The American Physical Society

Doppler cooling assumes quantum systems of two energy levels. However, atoms have are multi energetic systems The model of two energy levels for alkaline atoms (like Cesium) are not valid if a magnetic field is not zero. The Zeeman effect brakes the degeneration of states rising up the multi energetic behavior of atoms.

Firts energy levels of the Cs-133 atom Eléctrica  850nm Electrón Núcleo Hz F’=5 F’=4 F’=3 F’=2 F’=4 F’=3 F’=4 F’=3 251MHz 200MHz 150MHz 1167MHz + Efecto Zeeman 11 subniveles 9 subniveles 7 subniveles 5 subniveles 9 subniveles 7 subniveles 9 subniveles 7 subniveles + INTERACCION ENERGIA Espín-órbita 6 2 P 3/2 6 2 P 1/2 6 2 S 1/2  100GHz  894nm + No a escala

Magnetic field/ Teslas Energy / Joules 1 0 h HFS Region of interest

F=4 F´=5 m = +4 m = -4 m = 0 m = -5 m = +5 m = 0  852 nm 0 1 B / Gauss No a escala Energía

Temperatures below the Doppler limit x 0 44 22 lineal -- ++ -- z y m = -3/2 m = -1/2m = +1/2 m = +3/2 m = -1/2 m = +1/2 J = 1/2 J = 3/2

Stark effect g-½g-½ g+½g+½ 0 lineal -- ++ -- Energy Position 88 z 0 443838 225858

z Energía 88 443838 22 5858 g-½g-½ g+½g+½ Sisyphus effect

However, atom´s velocity interval for capture is proportional to the light intensity “Fricción” type force is independent of the laser intensity Force 2kv /  I 1 >I 2 >I 3 >I 4 I1I1 I2I2 I3I3 I4I4

m 1 0 m 1 0   m F = -1   m F = 1 h  0 h  L h  L z 0 Energía B(z) = Az z2z2 z1z1 z3z3 z4z4 J=0 J=1 Posición ~1 mm F = -  v - kz

Frecuencia  E  t  h/4    t  1/4   1Hz 0  Hz  /  Probabilidad de transición 0  Ramsey Method + ultracold Cs atoms

Thermal beam clocksCold atoms clocks Ramsey pattern for Cs-133

Ramsey Method + Optical Pumping

Ramsey fringe Frequency that defines the duration of the unit of time 1 kHz Transition probability (central line of the Ramsey spectrum)

Optical set up for a magneto-optical trap

Mechanical part of a magneto-optical trap (MOT)

Optical set up for a MOT

Mauricio López R (442)