Start Presentation September 27, 2012 The Structural Singularity Removal Algorithm by Pantelides This lecture deals with a procedure that can be used to.

Slides:



Advertisements
Similar presentations
The Game of Algebra or The Other Side of Arithmetic The Game of Algebra or The Other Side of Arithmetic © 2007 Herbert I. Gross by Herbert I. Gross & Richard.
Advertisements

Start Presentation October 11, 2012 Thermodynamics Until now, we have ignored the thermal domain. However, it is fundamental for the understanding of physics.
Start of Presentation Mathematical Modeling of Physical Systems © Prof. Dr. François E. Cellier September 20, D Mechanical Systems In this lecture,
Discrete Event Control
Start Presentation October 11, rd Homework Solution In this homework problem, we wish to exercise the application of the algorithms by Pantelides.
Start Presentation November 8, 2012 Bond Graphs for Mechanical Systems We shall look today in a bit more detail at the modeling of 1D mechanical systems.
System Analysis through Bond Graph Modeling Robert McBride May 3, 2005.
ECE 3336 Introduction to Circuits & Electronics
INTEGRATION BY PARTS ( Chapter 16 ) If u and v are differentiable functions, then ∫ u dv = uv – ∫ v du. There are two ways to integrate by parts; the.
Start Presentation October 4, rd Homework Problem In this homework problem, we wish to exercise the application of the algorithms by Pantelides.
Start of Presentation Mathematical Modeling of Physical Systems © Prof. Dr. François E. Cellier September 20, st Homework Problem We wish to analyze.
Start of Presentation Mathematical Modeling of Physical Systems © Prof. Dr. François E. Cellier Electrical CircuitsI This lecture discusses the mathematical.
François E. Cellier and Matthias Krebs
Start of Presentation Maple soft Conference 2006 The Need for Formulae Manipulation in the Object-oriented Modeling of Physical Systems François E. Cellier,
Meshes and Loops Steps of Mesh Analysis Supermesh Examples Lecture 6. Mesh Analysis 1.
Chapter 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Mathematics Quadratic Formula Science and Mathematics Education Research Group Supported by UBC Teaching and Learning Enhancement Fund Department.
Start Presentation November 29, th Homework – Solution In this homework, we shall attempt the modeling of a planar mechanical system. We shall.
Roman Numerals. The Numbers I-1 II-2 III-3 IV-4 V-5 VI-6 VII-7 VIII-8 IX-9 X-10 C-100 D-500 M-1000.
LINEAR PROGRAMMING SIMPLEX METHOD.
The Node Voltage Method
EENG 2610: Circuit Analysis Class 4: Nodal Analysis
Table of Contents The goal in solving a linear system of equations is to find the values of the variables that satisfy all of the equations in the system.
Inverting Amplifier. Introduction An inverting amplifier is a type of electrical circuit that reverses the flow of current passing through it. This reversal.
The second systematic technique to determine all currents and voltages in a circuit IT IS DUAL TO NODE ANALYSIS - IT FIRST DETERMINES ALL CURRENTS IN A.
Computational Intelligence: Methods and Applications Lecture 31 Combinatorial reasoning, or learning from partial observations. Włodzisław Duch Dept. of.
Start Presentation November 15, th Homework - Solution In this homework, we shall model and simulate a mechanical system as well as exercise the.
Chapter 17 – Methods of Analysis and Selected Topics (AC) Introductory Circuit Analysis Robert L. Boylestad.
Bond Graphs II In this class, we shall deal with the effects of algebraic loops and structural singularities on the bond graphs of physical systems. We.
Methods of Analysis Circuits 1 Fall 2005 Harding University Jonathan White.
ME451 Kinematics and Dynamics of Machine Systems Numerical Solution of DAE IVP Newmark Method November 1, 2013 Radu Serban University of Wisconsin-Madison.
Start Presentation October 4, 2012 Solution of Non-linear Equation Systems In this lecture, we shall look at the mixed symbolic and numerical solution.
RESISTIVE CIRCUITS MULTI NODE/LOOP CIRCUIT ANALYSIS.
Methods of Analysis Chapter 3. Introduction We are now prepared to apply Ohm’s law and Kirchhoff’s laws to develop two powerful techniques for circuit.
Equations, Inequalities, and Mathematical Models 1.2 Linear Equations
Start of Presentation September 27, st Homework Problem We wish to analyze the following electrical circuit.
The second systematic technique to determine all currents and voltages in a circuit IT IS DUAL TO NODE ANALYSIS - IT FIRST DETERMINES ALL CURRENTS IN A.
LOOP ANALYSIS The second systematic technique to determine all currents and voltages in a circuit IT IS DUAL TO NODE ANALYSIS - IT FIRST DETERMINES ALL.
NODE ANALYSIS One of the systematic ways to determine every voltage and current in a circuit The variables used to describe the circuit will be “Node Voltages”
General Methods of Network Analysis Node Analysis Mesh Analysis Loop Analysis Cutset Analysis State variable Analysis Non linear and time varying network.
Start of presentation September 27, 2012 Algebraic Loops and Structural Singularities The sorting algorithm, as it was demonstrated so far, does not always.
Grossman/Melkonian Chapter 3 Resistive Network Analysis.
ECE 2300 Circuit Analysis Lecture Set #7 The Mesh-Current Method.
KIRCHHOFF’S RULES. Junction rule. The sum of the magnitudes of the currents directed into a junction equals the sum of the magnitudes of the currents.
Start Presentation November 1, 2012 Treatment of Discontinuities II We shall today once more look at the modeling of discontinuous systems. First, an additional.
Mesh Analysis Introducing Supermeshes!!!. Mesh Analysis A mesh is a loop with no other loops within it; an independent loop. Mesh analysis provides another.
THE IMPORTANCE OF DISCRETE MATHEMATICS IN COMPUTER TECHNOLOGY.
Problem Reduction So far we have considered search strategies for OR graph. In OR graph, several arcs indicate a variety of ways in which the original.
7-3 Elimination Using Addition and Subtraction 7-4 Elimination Using Multiplication Objective: Students will be able to: Solve a system of linear equations.
The second systematic technique to determine all currents and voltages in a circuit IT IS DUAL TO NODE ANALYSIS - IT FIRST DETERMINES ALL CURRENTS IN A.
Mesh Analysis Introducing Supermeshes!!!. Mesh Analysis A mesh is a loop with no other loops within it; an independent loop. Mesh analysis provides another.
System To Generate Test Data: The Analysis Program Syed Nabeel.
Start Presentation October 4, 2012 Efficient Solution of Equation Systems This lecture deals with the efficient mixed symbolic/numeric solution of algebraically.
NODAL AND LOOP ANALYSIS TECHNIQUES
Integration (antidifferentiation) is generally more difficult than differentiation. There are no sure-fire methods, and many antiderivatives cannot be.
SCHOOL OF ENGINEERING Introduction to Electrical and Electronic Engineering Part 2 Pr. Nazim Mir-Nasiri and Pr. Alexander Ruderman.
ECE 1270: Introduction to Electric Circuits
Modeling and Simulation in Engineering using Modelica
Motion in One Dimension (Velocity vs. Time) Chapter 5.2
Copyright © Cengage Learning. All rights reserved.
Introducing Supernodes!!!
Introduction to Inferential Statistics
Use the node-voltage method to write a complete set of equations that could be used to solve the circuit below. Define all variables. Do not attempt.
4th Homework Problem In this homework problem, we wish to exercise the tearing and relaxation methods by means of a slightly larger problem than that presented.
4th Homework Solution In this homework problem, we wish to exercise the tearing and relaxation methods by means of a slightly larger problem than that.
ECE 576 POWER SYSTEM DYNAMICS AND STABILITY
Kirchhoff’s Laws.
Topic 11 Super-Nodes (4.4).
I  Linear and Logical Pulse II  Instruments Standard Ch 17 GK I  Linear and Logical Pulse II  Instruments Standard III  Application.
LOOP ANALYSIS The second systematic technique to determine all currents and voltages in a circuit IT IS DUAL TO NODE ANALYSIS - IT FIRST DETERMINES ALL.
Presentation transcript:

Start Presentation September 27, 2012 The Structural Singularity Removal Algorithm by Pantelides This lecture deals with a procedure that can be used to remove structural singularities from a model in a systematic and algorithmic fashion. It is called the Algorithm of Pantelides. The algorithm of Pantelides is a symbolic index- reduction algorithm.

Start Presentation September 27, 2012 Table of Contents Structural singularities and the structure digraphStructural singularities and the structure digraph Pantelides algorithmPantelides algorithm

Start Presentation September 27, 2012 Structural Singularities: An Example I I 1 I 2 I 3 i C i L1 i L2 i R v 1 v 2 v 3 v 0 We compose a model using the currents, the Voltages and the potentials. Consequently, the mesh equations are being ignored. We have 7 circuit components plus the ground, therefore 2  = 15 equations. In addition, there are 4 nodes giving rise to another 3 equations. Therefore, we expect 18 equations in 18 unknowns. For passive components, it is customary to normalize the Voltages in the same direction as the currents. For active components (sources), the reverse is true.

Start Presentation September 27, 2012 Structural Singularities: An Example II 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 /dt 7: i C = C · du C /dt 8: v 0 = 0 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0  I1I1 I2I2 I3I3 uRuR iRiR u L1 di L1 /dt u L2 di L2 /dt iCiC du C /dt v0v0 v1v1 v2v2 v3v3 u1u1 u2u2 u3u3

Start Presentation September 27, 2012 Structural Singularities: An Example III 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 /dt 7: i C = C · du C /dt 8: v 0 = 0 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0  I1I1 I2I2 I3I3 uRuR iRiR u L1 di L1 /dt u L2 di L2 /dt iCiC du C /dt v0v0 v1v1 v2v2 v3v3 u1u1 u2u2 u3u

Start Presentation September 27, 2012 Structural Singularities: An Example IV 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 /dt 7: i C = C · du C /dt 8: v 0 = 0 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0  I1I1 I2I2 I3I3 uRuR iRiR u L1 di L1 /dt u L2 di L2 /dt iCiC du C /dt v0v0 v1v1 v2v2 v3v3 u1u1 u2u2 u3u Constraint Equation All connections are blue

Start Presentation September 27, 2012 Coloring of the Structure Digraph The algorithm for coloring the structure digraph is completely analogous to the previously used method for making the equations causal. An implementation of the method by means of a computer program probably prefers the digraph, since this algorithm can directly be mapped onto data structures of conventional programming languages. For the human eye, the coloring of the equations may be more readable. For this reason, we shall continue, in the lecture, to color equations rather than digraphs. The vertical sorting can happen simultaneously by renumbering of the equations.

Start Presentation September 27, 2012 The Algorithm by Pantelides I As soon as a constraint equation has been found, this equation must be differentiated. In the algorithm of Pantelides, the differentiated constraint equation is added to the set of equations. Consequently, the set of equations has now one equation too many. In order to re-equalize the number of equations and unknowns, one of the integrators that is associated with the constraint equation is being eliminated.

Start Presentation September 27, 2012 The Algorithm by Pantelides II dx dt x  unknown known, since this is a state variable dx dt x  unknown  dx x unknown  An additional unknown was created by the elimination of the integrator. x and dx are now algebraic variables, for which there must be found equations.

Start Presentation September 27, 2012 The Algorithm by Pantelides III When differentiating constraint equations, it can happen that additional new variables are being created, e.g. v  dv, where v is an algebraic variable. Since v was already blue (otherwise, this would not have been a constraint equation), there already exists another equation to compute v. This equation must also be differentiated. The differentiation of additional equations continues until no additional variables are being created.

Start Presentation September 27, 2012 The Algorithm by Pantelides : An Example I 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 /dt 7: i C = C · du C /dt 8: v 0 = 0 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 dI 1 + di C + di L2 + dI 3 = 0 eliminated integrator newly introduced variables

Start Presentation September 27, 2012 The Algorithm by Pantelides : An Example II 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 /dt 7: i C = C · du C /dt 8: v 0 = 0 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 19: dI 1 + di C + di L2 + dI 3 = 0 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2  1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 7: i C = C · du C /dt 8: v 0 = 0 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 19: dI 1 + di C + di L2 + dI 3 = 0

Start Presentation September 27, 2012 The Algorithm by Pantelides : An Example III 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 20: dI 1 = df 1 (t)/dt 21: dI 3 = df 3 (t)/dt 22: di C = di L1 /dt + dI 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 19: dI 1 + di C + di L2 + dI 3 = 0 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 7: i C = C · du C /dt 8: v 0 = 0 u L1 = L 1 · di L1 /dt newly introduced variable 23: dI 2 = df 2 (t)/dt

Start Presentation September 27, 2012 The Algorithm by Pantelides : An Example IV 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 19: dI 1 + di C + di L2 + dI 3 = 0 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 7: i C = C · du C /dt 8: v 0 = 0 20: dI 1 = df 1 (t)/dt 21: dI 3 = df 3 (t)/dt 22: di C = di L1 /dt + dI 2 23: dI 2 = df 2 (t)/dt

Start Presentation September 27, 2012 The Algorithm by Pantelides : An Example V 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 19: dI 1 + di C + di L2 + dI 3 = 0 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 7: i C = C · du C /dt 8: v 0 = 0 20: dI 1 = df 1 (t)/dt 21: dI 3 = df 3 (t)/dt 22: di C = di L1 /dt + dI 2 23: dI 2 = df 2 (t)/dt

Start Presentation September 27, 2012 The Algorithm by Pantelides : An Example VI 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 19: dI 1 + di C + di L2 + dI 3 = 0 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 7: i C = C · du C /dt 8: v 0 = 0 20: dI 1 = df 1 (t)/dt 21: dI 3 = df 3 (t)/dt 22: di C = di L1 /dt + dI 2 23: dI 2 = df 2 (t)/dt

Start Presentation September 27, 2012 The Algorithm by Pantelides : An Example VII 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 19: dI 1 + di C + di L2 + dI 3 = 0 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 7: i C = C · du C /dt 8: v 0 = 0 20: dI 1 = df 1 (t)/dt 21: dI 3 = df 3 (t)/dt 22: di C = di L1 /dt + dI 2 23: dI 2 = df 2 (t)/dt

Start Presentation September 27, 2012 The Algorithm by Pantelides : An Example VIII 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 19: dI 1 + di C + di L2 + dI 3 = 0 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 7: i C = C · du C /dt 8: v 0 = 0 20: dI 1 = df 1 (t)/dt 21: dI 3 = df 3 (t)/dt 22: di C = di L1 /dt + dI 2 23: dI 2 = df 2 (t)/dt There now exists an algebraically coupled system with 7 equations in 7 unknowns. di L2 Choice

Start Presentation September 27, 2012 The Algorithm by Pantelides : An Example IX 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 19: dI 1 + di C + di L2 + dI 3 = 0 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 7: i C = C · du C /dt 8: v 0 = 0 20: dI 1 = df 1 (t)/dt 21: dI 3 = df 3 (t)/dt 22: di C = di L1 /dt + dI 2 23: dI 2 = df 2 (t)/dt

Start Presentation September 27, 2012 Summary I First, we find a complete set of a-causal DAEs. The graph coloring algorithm by Tarjan is then applied to this set of DAEs. If an equation is found that is colored entirely in blue, then the system is structurally singular. The structurally singular system is made non-singular by means of the algorithm by Pantelides. It may be necessary to apply the Pantelides algorithm multiple times.

Start Presentation September 27, 2012 Summary II The graph coloring algoriths by Tarjan is now applied to the modified non-singular set of DAEs. If the algorithm stalls, the modified system now contains one or several algebraic loops. The occurrence of algebraic loops after application of the Pantelides algorithm to a structurally singular system is quite common. The system can now be further processed. The tearing algorithm, which has already been presented, is one possible approach to deal with algebraically coupled systems.

Start Presentation September 27, 2012 References Cellier, F.E. and H. Elmqvist (1993), “Automated formula manipulation supports object-oriented continuous-system modeling,” IEEE Control Systems, 13(2), pp Automated formula manipulation supports object-oriented continuous-system modeling Pantelides, C.C. (1988), “The consistent initialization of differential-algebraic systems,” SIAM Journal Scientific Statistical Computation, 9(2), pp