Introduction to Computational Geometry Computational Geometry, WS 2007/08 Lecture 1 – Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut.

Slides:



Advertisements
Similar presentations
Order-k Voronoi Diagram in the Plane
Advertisements

Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Line Segment Intersection Computational Geometry, WS 2007/08 Lecture 3 – Supplementary Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut.
Computational Geometry, WS 2007/08 Lecture 17 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für Angewandte Wissenschaften.
The Pythagorean theorem
Convex Hulls Computational Geometry, WS 2007/08 Lecture 2 – Supplementary Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Chapter 1.1 Common Core G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions.
Convex Hulls Computational Geometry, WS 2006/07 Lecture 2 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für.
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part IV Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Orthogonal Range Searching Computational Geometry, WS 2006/07 Lecture 13 – Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
Lection 1: Introduction Computational Geometry Prof.Dr.Th.Ottmann 1 Professor Dr.Thomas Ottmann Albert Ludwigs University Freiburg Computational Geometry.
Delaunay Triangulation Computational Geometry, WS 2006/07 Lecture 11 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Voronoi Diagrams Computational Geometry, WS 2006/07 Lecture 10 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Duality and Arrangements Computational Geometry, WS 2007/08 Lecture 6 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Pythagoras Pythagoras was a Greek scholar and philosopher ca 548 BC to 495 BC. Known as “the father of numbers, his teachings covered a variety of areas.
Introduction to Computational Geometry Computational Geometry, WS 2007/08 Lecture 1 – Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut.
Orthogonal Range Searching Computational Geometry, WS 2006/07 Lecture 13 – Part III Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
Persistent Data Structures Computational Geometry, WS 2007/08 Lecture 12 Prof. Dr. Thomas Ottmann Khaireel A. Mohamed Algorithmen & Datenstrukturen, Institut.
Linear Programming Computational Geometry, WS 2007/08 Lecture 7 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Geometric Data Structures Computational Geometry, WS 2007/08 Lecture 13 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Linear Programming Computational Geometry, WS 2007/08 Lecture 7, Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Point Location Computational Geometry, WS 2007/08 Lecture 5 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für.
Closest Pair of Points Computational Geometry, WS 2006/07 Lecture 9, Part II Prof. Dr. Thomas Ottmann Khaireel A. Mohamed Algorithmen & Datenstrukturen,
Polygon Triangulation Computational Geometry, WS 2007/08 Lecture 9 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part III Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Orthogonal Range Searching Computational Geometry, WS 2006/07 Lecture 13 - Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
Polygon Triangulation Computational Geometry, WS 2006/07 Lecture 8, Part 2 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Line Segment Intersection Computational Geometry, WS 2006/07 Lecture 3 – Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Art Gallery Theorem Computational Geometry, WS 2006/07 Lecture 8, Part 1 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Duality and Arrangements Computational Geometry, WS 2006/07 Lecture 7 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Lesson 6-6 The Pythagorean Theorem. Ohio Content Standards:
Math 260 Foundations of Geometry
CCSS Content Standards G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions.
Pythagorean Theorem. Pythagoras Born on the Greek Isle of Samos in the 6 th Century Lived from BC He studied and made contributions in the fields.
Tools of Geometry Chapter 1 Vocabulary Mrs. Robinson.
Pythagoras of Samos about 569 BC - about 475 BC. i) The sum of the angles of a triangle is equal to two right angles. Also the Pythagoreans knew the generalisation.
Pythagorean Theorem A 2 +B 2 =C 2 Michelle Moard.
4.7 – Square Roots and The Pythagorean Theorem. SQUARES and SQUARE ROOTS: Consider the area of a 3'x3' square: A = 3 x 3 A = (3) 2 = 9.
2 pt 3 pt 4 pt 5pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2pt 3 pt 4pt 5 pt 1pt 2pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4pt 5 pt 1pt CIRCLESDEFINITIONSTRIANGLESANGLES.
Section 7.1 – Solving Quadratic Equations. We already know how to solve quadratic equations. What if we can’t factor? Maybe we can use the Square Root.
Math 409/409G History of Mathematics Egyptian Geometry.
Using an Axiomatic System of Paper Folding to Trisect the Angle
© 2010 Pearson Prentice Hall. All rights reserved. CHAPTER 10 Geometry.
Pythagorean Theorem The best known mathematical proof is named for Pythagoras.
The Pythagorean Theorem and Its Converse
By Holly Peters and Adelya Baban
A Brief History of Pythagorus and the Pythagorean Theorem
Chapter 2 Construction  Proving. Historical Background Euclid’s Elements Greek mathematicians used  Straightedge  Compass – draw circles, copy distances.
Line Segment Intersection Computational Geometry, WS 2006/07 Lecture 3 – Part III Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
College Algebra Section R.3 Geometry Review Objectives of this Section Use the Pythagorean Theorem and Its Converse Know Geometry Formulas.
A PI-Day Activity Let’s do . Cutting π Materials Circular object (ball); string; scissors; tape To Do and Notice Carefully wrap string around the circumference.
Doug Mitchell Ms. Reyes 8 th Grade Class. One of Greece‘s first great mathematical thinkers, Pythagoras was also a philosopher with a devoted group of.
Chapter 1: Square Roots and the Pythagorean Theorem Unit Review.
M May Pythagoras’ Theorem The square on the hypotenuse equals the sum of the squares on the other two sides.
Click on Geometry Click on Plane Geometry Scroll down to Pythagoras’ Theorem and Pythagorean Triples You will need both of these.
Geometry, Quarter 2, Unit 2.3 Proving Theorems About Parallelograms Days: 11.
by: Dumančić Dino Fabijančić Krešimir Gazdović Kruno Viljevac Slaven
Geometry 7-4 Area of Trapezoids, Rhombuses, and Kites.
Right Triangle The sides that form the right angle are called the legs. The side opposite the right angle is called the hypotenuse.
7.1 Apply the Pythagorean Theorem
Chapter #1 Presentation
9-2 Pythagorean Theorem.
PYTHAGOREAN THEOREM VOCABULARY.
PROVING THE PYTHAGOREAN THEOREM
Find Perimeter, Circumference, and Area
Warm UP Get a slip of paper from the chair. Follow the directions and answer the questions.
PYTHAGOREAN THEOREM VOCABULARY.
Warm UP Get a slip of paper from the chair. Follow the directions and answer the questions.
Presentation transcript:

Introduction to Computational Geometry Computational Geometry, WS 2007/08 Lecture 1 – Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für Angewandte Wissenschaften Albert-Ludwigs-Universität Freiburg

Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann2 Overview Historicity –Proof-based geometry –Algorithmic geometry –Axiomatic geometry Computational geometry today Problems and applications Geometrical objects –Points –Lines –Surfaces Analyses and techniques

Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann3 Proof-Based Geometry Pythagoras’ Theorem: “The sum of the squares of the sides of a right triangle is equal to the square of the hypotenuse”. Already known to the Babylonians and Egyptians as experimental fact. Pythagorean innovation: –A proof, independent of experimental numerical verification Pythagoras of Samos (582 BC to 507 BC)

Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann4 Proof-Based Geometry Pythagoras’ Theorem: “The sum of the squares of the sides of a right triangle is equal to the square of the hypotenuse”.

Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann5 Proof of Pythagoras’ Theorem

Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann6 Algorithmic Geometry Ancient example (ca BC BC): Problem 50: A circular field of diameter 9 has the same area as a square of side 8. „Subtract 1/9 of the diameter which leaves 8 khet. The area is 8 multiplied by 8 or 64 setat“ Problem 48: Gives a hint of how this formula is constructed. Rhind Mathematical Papyrus (Ancient Egypt, ca BC)

Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann7 Algorithmic Approach to Geometry 89 Problem: A circular field has diameter 9 khet. What is ist area? Solution: Subtract 1/9-th of the diameter which leaves 8 khet. The area is 8 multiplied by 8, or 64 setat.

Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann8 Algorithmic Approach to Geometry Trisect each side. Remove the corner triangles. The resulting octogal figure approximates the circle. The area of the octagonal figure is: 9  9 – 4(1/2  3  3) = 63  8 2 The true area of the circle is: r 2 . Thus, (9/2) 2   = 8 2 or  = 4 (8/9) 2 = … Problem 48

Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann9 Algorithmic Approach to Geometry Ancient method led to a very close approximate of the value PI (  ); up to 2% precision. Realises the “experimental quadrature of the circle”

Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann10 Axiomatic Geometry Fundamental notions: –Points, straight lines, planes, incidence relation (“lies on”, “goes through”) A1: For any two points P and Q, there is exactly one straight line g on which both P and Q lie. A2: For each straight line g, there is one point which is not on g. Euclid of Alexandria (ca. 325 BC – 265 BC)

Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann11 The Parallel Axiom A3: For each straight line g and each point P, which is not on g, there is exactly one straight line h, on which P lies and which does not have a common point with g. Question: Is A3 independent of A1 and A2?  Approach: Klein’s Model p h2 h1 g

Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann12 Computational Geometry Today Essential addition to our daily lives; a convenience taken for granted. Example: Global Positioning System (GPS) –Utilizes proof-based and algorithmic geometry

Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann13 The Global Positioning System (GPS) A constellation of 28 satellites orbiting the earth –Inclination of 55° to the equator –6 orbital planes at a height of 20,180km –Contains 4 atomic clocks on board each satellite –Signals takes 67.3ms to reach earth

Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann14 The Geometry in GPS Technology The process of trilateration (similar to triangulation) with at least 3 satellites. Fourth satellite is used to synchronise time signals.

Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann15 Computational Geometry Today Applicative and valid in the Industrial world. Example: Paper folding (mass production: brochures, maps, newspapers, magazines, etc.) –Utilizes axiomatic geometry in an operational manner.

Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann16 Huzita’s Axioms A1: Given two points p1 and p2, there is a unique fold that passes through both of them. A2: Given two points p1 and p2, there is a unique fold that places p1 onto p2. A3: Given two lines l1 and l2, there is a fold that places l1 onto l2. A4: Given a point p1 and a line l1, there is a unique fold perpendicular to l1 that passes through point p1.

Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann17 Huzita’s Axioms A5: Given two points p1 and p2 and a line l1, there is a fold that places p1 onto l1 and passes through p2. A6: Given two points p1 and p2 and two lines l1 and l2, there is a fold that places p1 onto l1 and p2 onto l2. A7: Given one point p and two lines l1 and l2, there is a fold that places p onto l1 and perpendicular to l2. Geometry based on these axioms is more powerful than the standard Compass-and-straightedge Geometry!

Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann18 Computational Geometry Today Back to the historical roots Search for simple, robust, efficient algorithms Fragmentation into: –Rather theoretical investigations –Development of practically useful tools Contributions: Hundreds of research papers per year Application of algorithmic techniques and data structures Efficient solution of fundamental, “simple” problems Development of new techniques and data structures –Randomization and incremental construction –Competitive algorithms