Chapter 13 Artificial Intelligence. 2 Artificial: humanly contrived often on a natural model Intelligence: the ability to apply knowledge to manipulate.

Slides:



Advertisements
Similar presentations
Critical Reading Strategies: Overview of Research Process
Advertisements

Artificial Intelligence
Presentation on Artificial Intelligence
Chapter 13 Artificial Intelligence. 2 Artificial: humanly contrived often on a natural model Intelligence: the ability to apply knowledge to manipulate.
Artificial intelligence. I believe that in about fifty years' time it will be possible, to programme computers, with a storage capacity of about 10.
Artificial Intelligence
Chapter 13 Artificial Intelligence. Chapter Goals Discuss types of problems that – humans do best – computers do best Turing test 13-2.
13-1 Thinking Machines A computer can do some things better -- and certainly faster--than a human can –Adding a thousand four-digit numbers –Counting the.
Chapter 13 Artificial Intelligence. 2 Chapter Goals Distinguish between the types of problems that humans do best and those that computers do best Explain.
Chapter 13 Artificial Intelligence Nell Dale John Lewis.
Nell Dale & John Lewis (adaptation by Michael Goldwasser and Erin Chambers) Artificial Intelligence.
12/2/06 1 Hofstra University - CSC005 Chapter 13 Artificial Intelligence.
Artificial Intelligence
Chapter 13 Artificial Intelligence Nell Dale John Lewis.
Artificial Intelligence
Chapter 10 Artificial Intelligence © 2007 Pearson Addison-Wesley. All rights reserved.
Turing’s Paper Can Machines Think? Freshman Inquiry Cyber Millenium.
Artificial Intelligence
CPSC 533 Philosophical Foundations of Artificial Intelligence Presented by: Arthur Fischer.
Approaches to AI. Robotics Versus Artificial Intelligence.
CS 357 – Intro to Artificial Intelligence  Learn about AI, search techniques, planning, optimization of choice, logic, Bayesian probability theory, learning,
Acting Humanly: The Turing test (1950) “Computing machinery and intelligence”:   Can machine’s think? or Can machines behave intelligently? An operational.
CSC 160 Computer Programming for Non-Majors Lecture #12: Syntax and Semantics Prof. Adam M. Wittenstein
Artificial intelligence. [I]f there had been such machines, possessing the organs and outward form of a monkey or some other animal without reason,
Artificial Intelligence
Chapter 13 Artificial Intelligence. 2 Thinking Machines  A computer can do some things better --and certainly faster--than a human can: Adding a thousand.
Chapter 13 Artificial Intelligence. 2 Chapter Goals Distinguish between the types of problems that humans do best and those that computers do best Explain.
Chapter 11: Artificial Intelligence
Artificial Intelligence Lecture No. 28 Dr. Asad Ali Safi ​ Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology.
Alan Turing In 1950 asked - Can Machines Think? Turing changed that into the Turing Test “Can Computers Understand Language?” would have been.
Invitation to Computer Science 5th Edition
Artificial Intelligence Introduction (2). What is Artificial Intelligence ?  making computers that think?  the automation of activities we associate.
Chapter 14: Artificial Intelligence Invitation to Computer Science, C++ Version, Third Edition.
Chapter 10 Artificial Intelligence. © 2005 Pearson Addison-Wesley. All rights reserved 10-2 Chapter 10: Artificial Intelligence 10.1 Intelligence and.
What is Artificial Intelligence? AI is the effort to develop systems that can behave/act like humans. Turing Test The problem = unrestricted domains –human.
Turing Test and other amusements. Read this! The Actual Article by Turing.
The Turing Test. 2 In the beginning…  In 1950 Alan Turing wrote a paper titled Computing Machinery And Intelligence, in which he proposed to consider.
Lecture 12: 22/6/1435 Natural language processing Lecturer/ Kawther Abas 363CS – Artificial Intelligence.
Artificial Intelligence CS105. Team Meeting Time (10 minutes) Find yourself a team Find your team leader Talk about topics and responsibilities.
 Prominent AI Reseacher  Colleague of Alan Turing at Bletchley Park  1992 Paper: ◦ Turing’s Test and Conscious Thought Turing’s Test and Conscious.
Artificial Intelligence Introductory Lecture Jennifer J. Burg Department of Mathematics and Computer Science.
Artificial Intelligence
1 Lecture 1: Introduction to Artificial Intelligence.
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 11: Artificial Intelligence Computer Science: An Overview Tenth Edition.
Chapter 11 Artificial Intelligence Introduction to CS 1 st Semester, 2015 Sanghyun Park.
Artificial Intelligence By Michelle Witcofsky And Evan Flanagan.
How Solvable Is Intelligence? A brief introduction to AI Dr. Richard Fox Department of Computer Science Northern Kentucky University.
CSC Intro. to Computing Lecture 22: Artificial Intelligence.
Philosophy 4610 Philosophy of Mind Week 8: Can a Computer Think?
I Robot.
1 Introduction to Artificial Intelligence (Lecture 1)
Section 2.3 I, Robot Mind as Software McGraw-Hill © 2013 McGraw-Hill Companies. All Rights Reserved.
1 The main topics in AI Artificial intelligence can be considered under a number of headings: –Search (includes Game Playing). –Representing Knowledge.
The argument from reason. leibniz’s law arguments 1)All Fs are G. 2)o is not G. 3)o is not an F.
© SEMINAR ON ARTIFICIAL NEURAL NETWORK AND ITS APPLICATIONS By Mr. Susant Kumar Behera Mrs. I. Vijaya.
Dr.Abeer Mahmoud ARTIFICIAL INTELLIGENCE (CS 461D) Dr. Abeer Mahmoud Computer science Department Princess Nora University Faculty of Computer & Information.
Artificial Intelligence: Research and Collaborative Possibilities a presentation by: Dr. Ernest L. McDuffie, Assistant Professor Department of Computer.
Philosophy 1050: Introduction to Philosophy Week 13: AI in the Real World and Review.
Decision Support and Business Intelligence Systems (9 th Ed., Prentice Hall) Chapter 12: Artificial Intelligence and Expert Systems.
Overview of Artificial Intelligence (1) Artificial intelligence (AI) Computers with the ability to mimic or duplicate the functions of the human brain.
Chapter 11: Artificial Intelligence
Chapter 11: Artificial Intelligence
Artificial Intelligence
Artificial Intelligence (Lecture 1)
Artificial Intelligence
Copyright © Cengage Learning. All rights reserved.
Artificial Intelligence
Information Retrieval
Presentation transcript:

Chapter 13 Artificial Intelligence

2 Artificial: humanly contrived often on a natural model Intelligence: the ability to apply knowledge to manipulate one's environment or to think abstractly as measured by objective criteria Clearly, intelligence is an internal characteristic. How can it be identified?

3 Thinking Machines  A computer can do some things better --and certainly faster--than a human can: Adding a thousand four-digit numbers Counting the distribution of letters in a book Searching a list of 1,000,000 numbers for duplicates Matching finger prints

4 Thinking Machines  BUT a computer would have difficulty pointing out the cat in this picture, which is easy for a human.  Artificial intelligence (AI) The study of computer systems that attempt to model and apply the intelligence of the human mind. Figure 13.1 A computer might have trouble identifying the cat in this picture.

5 In the beginning…  In 1950 Alan Turing wrote a paper titled Computing Machinery And Intelligence, in which he proposed to consider the question “Can machines think?” Computing Machinery And Intelligence  But the question is “loaded” so he proposed to replace it with what has since become known as the Turing Test. “Can a machine play the Imitation Game?”

6 The Imitation Game Skip detailed description

7 The Imitation Game The 'imitation game' is played with three people, a man (A), a woman (B), and an interrogator (C) who may be of either sex. The interrogator stays in a room apart from the other two. The object of the game for the interrogator is to determine which of the other two is the man and which is the woman.

8 The Imitation Game The interrogator is allowed to put questions to A and B. It is A's object in the game to try and cause C to make the wrong identification. The object of the game for the third player (B) is to help the interrogator.

9 The Imitation Game We now ask the question, 'What will happen when a machine takes the part of A in this game?' Will the interrogator decide wrongly as often when the game is played like this as he does when the game is played between a man and a woman?

10 The Imitation Game

11 The Turing Test (objections)  There are authors who question the validity of the Turing test.  The objections tend to be of 2 types. The first is an attempt to distinguish degrees, or types of equivalence…

12 The Turing Test (objections)  Weak equivalence: Two systems (human and computer) are equivalent in results (output), but they do not arrive at those results in the same way.  Strong equivalence: Two systems (human and computer) use the same internal processes to produce results.

13 The Turing Test (objections)  The Turing Test, they argue, can demonstrate weak equivalence, but not strong. So even if a computer passes the test we won’t be able to say that it thinks like a human.  Of course, neither they, nor anyone else, can explain how humans think!  So strong equivalence is a nice theoretical construction, but since it’s impossible to demonstrate it between humans, it would be an unfair requirement of the Turing Test.

14 The Turing Test (objections)  The other objection is that a computer might seem to be behaving in an intelligent manner, while it’s really just imitating behaviour.  This might be true, but notice that when a parrot talks, or a horse counts, or a pet obeys our instructions, or a child imitates its parents we take all of these things to be signs of intelligence.  If a parrot mimicking human sounds can be considered intelligent (at least to some small degree) then why wouldn’t a computer be considered intelligent (at least to some small degree) for imitating other human behaviour?

15 Turing’s View  “I believe that in about fifty years time it will be possible to programme computers with a storage capacity of about 10 9 to make them play the imitation game so well that an average interrogator will not have more than 70 per cent chance of making the right identification after five minutes of questioning.”

16 Context  In 1950, computers were very primitive. UNIVAC I was the first commercial computer made in the United States. It was delivered to the United States Census Bureau on March 31, 1951! UNIVAC I  At a time when the first computers were just being built, to suggest that they might soon be able to think was quite radical.

17 Objections Turing Foresaw 1. The Theological Objection 2. The 'Heads in the Sand' Objection 3. The Mathematical Objection 4. The Argument from Consciousness 5. Arguments from Various Disabilities 6. Lady Lovelace's Objection 7. Argument from Continuity in the Nervous System 8. The Argument from Informality of Behaviour 9. The Argument from Extra-Sensory Perception

18 Can Machines Think?  No machine has yet passed the Turing Test.  Loebner Prize established in 1990 Loebner Prize $100,000 and a gold medal will be awarded to the first computer whose responses are indistinguishable from a human's

19 Aspects of AI  Knowledge Representation Semantic Networks Search Trees  Expert Systems  Neural Networks  Natural Language Processing  Robotics

20 Knowledge Representation  The knowledge needed to represent an object or event depends on the situation.  There are many ways to represent knowledge. One is natural language. Even though natural language is very descriptive, it doesn’t lend itself to efficient processing.

21 Semantic Networks  Semantic network: A knowledge representation technique that focuses on the relationships between objects.  A directed graph is used to represent a semantic network (net).

22 Semantic Networks Figure 13.3 A semantic network

23 Semantic Networks  The relationships that we represent are completely our choice, based on the information we need to answer the kinds of questions that we will face.  The types of relationships represented determine which questions are easily answered, which are more difficult to answer, and which cannot be answered.

24 Search Trees  Search tree: a structure that represents all possible moves in a game, for both you and your opponent.  The paths down a search tree represent a series of decisions made by the players.

25 Search Trees Figure 13.4 A search tree for a simplified version of Nim

26 Search Trees  Search tree analysis can be applied nicely to other, more complicated games such as chess.  Because Chess trees are so large, only a fraction of the tree can be analyzed in a reasonable time limit, even with modern computing power.

27 Search Trees Techniques for searching trees  Depth-first: a technique that involves the analysis of selected paths all the way down the tree.  Breadth-first: a technique that involves the analysis of all possible paths but only for a short distance down the tree. Breadth-first tends to yield the best results.

28 Search Trees Figure 13.5 Depth-first and breadth-first searches

29 Search Trees Even though the breadth-first approach tends to yield the best results, we can see that a depth- first search will get to the goal sooner – IF we choose the right branch. Heuristics are guidelines that suggest taking one path rather than another one.

30 Expert Systems  Knowledge-based system: a software system that embodies and uses a specific set of information from which it extracts and processes particular pieces.  Expert system: a software system based the knowledge of experts in a specialized field. An expert system uses a set of rules to guide its processing. The inference engine is the part of the software that determines how the rules are followed.

31 Expert Systems  Example: What type of treatment should I put on my lawn? NONE—apply no treatment at this time TURF—apply a turf-building treatment WEED—apply a weed-killing treatment BUG—apply a bug-killing treatment FEED—apply a basic fertilizer treatment WEEDFEED—apply a weed-killing and fertilizer combination treatment

32 Expert Systems  Boolean variables BARE—the lawn has large, bare areas SPARSE—the lawn is generally thin WEEDS—the lawn contains many weeds BUGS—the lawn shows evidence of bugs

33 Expert Systems  Some rules if (CURRENT – LAST < 30) then NONE if (SEASON = winter) then not BUGS if (BARE) then TURF if (SPARSE and not WEEDS) then FEED if (BUGS and not SPARSE) then BUG if (WEEDS and not SPARSE) then WEED if (WEEDS and SPARSE) then WEEDFEED

34 Expert Systems  An execution of our inference engine System: Does the lawn have large, bare areas? User: No System: Does the lawn show evidence of bugs? User: No System: Is the lawn generally thin? User: Yes System: Does the lawn contain significant weeds? User: Yes System: You should apply a weed-killing and fertilizer combination treatment.

35 Artificial Neural Networks  Attempt to mimic the actions of the neural networks of the human body.  Let’s first look at how a biological neural network works: A neuron is a single cell that conducts a chemically-based electronic signal. At any point in time a neuron is in either an excited or inhibited state.

36 Artificial Neural Networks A series of connected neurons forms a pathway. A series of excited neurons creates a strong pathway. A biological neuron has multiple input tentacles called dendrites and one primary output tentacle called an axon. The gap between an axon and a dendrite is called a synapse.

37 Artificial Neural Networks Figure 13.6 A biological neuron

38 Artificial Neural Networks  A neuron accepts multiple input signals and then controls the contribution of each signal based on the “importance” the corresponding synapse gives to it.  The pathways along the neural nets are in a constant state of flux.  As we learn new things, new strong neural pathways are formed.

39 Artificial Neural Networks  Each processing element in an artificial neural net is analogous to a biological neuron. An element accepts a certain number of input values and produces a single output value of either 0 or 1. Associated with each input value is a numeric weight.

40 Sample “Neuron”  Artificial “neurons” can be represented as elements. Inputs are labelled v1, v2 Weights are labelled w1, w2 The threshold value is represented by T O is the output

41 Artificial Neural Networks The effective weight of the element is defined to be the sum of the weights multiplied by their respective input values: v1*w1 + v2*w2 If the effective weight meets the threshold, the unit produces an output value of 1. If it does not meet the threshold, it produces an output value of 0.

42 Artificial Neural Networks  The process of adjusting the weights and threshold values in a neural net is called training.  A neural net can be trained to produce whatever results are required.

43 Sample “Neuron”  If the input Weights and the Threshold are set to the above values, how does the neuron act?  Try a Truth Table…

44 Sample “Neuron” v1v2v1*w1v2*w2∑O w1=.5, w2=.5, T=1 With the weights set to.5 this neuron behaves like an AND gate.

45 Sample “Neuron”  How about now?

46 Sample “Neuron” v1v2v1*w1v2*w2∑O w1=1, w2=1, T=1 With the weights set to 1 this neuron behaves like an OR gate.

47 Natural Language Processing  There are three basic types of processing going on during human/computer voice interaction: Voice recognition — recognizing human words Natural language comprehension — interpreting human communication Voice synthesis — recreating human speech  Common to all of these problems is the fact that we are using a natural language, which can be any language that humans use to communicate.

48 Voice Synthesis  There are two basic approaches to the solution: Dynamic voice generation Recorded speech  Dynamic voice generation: A computer examines the letters that make up a word and produces the sequence of sounds that correspond to those letters in an attempt to vocalize the word.  Phonemes: The sound units into which human speech has been categorized.

49 Voice Synthesis Figure 13.7 Phonemes for American English

50 Voice Synthesis  Recorded speech: A large collection of words is recorded digitally and individual words are selected to make up a message. Telephone voice mail systems often use this approach: “Press 1 to leave a message for Nell Dale; press 2 to leave a message for John Lewis.”

51 Voice Synthesis  Each word or phrase needed must be recorded separately.  Furthermore, since words are pronounced differently in different contexts, some words may have to be recorded multiple times. For example, a word at the end of a question rises in pitch compared to its use in the middle of a sentence.

52 Voice Recognition  The sounds that each person makes when speaking are unique.  We each have a unique shape to our mouth, tongue, throat, and nasal cavities that affect the pitch and resonance of our spoken voice.  Speech impediments, mumbling, volume, regional accents, and the health of the speaker further complicate this problem.

53 Voice Recognition  Furthermore, humans speak in a continuous, flowing manner. Words are strung together into sentences. Sometimes it’s difficult to distinguish between phrases like “ice cream” and “I scream”. Also, homonyms such as “I” and “eye” or “see” and “sea”.  Humans can often clarify these situations by the context of the sentence, but that processing requires another level of comprehension.  Modern voice-recognition systems still do not do well with continuous, conversational speech.

54 Natural Language Comprehension  Even if a computer recognizes the words that are spoken, it is another task entirely to understand the meaning of those words. Natural language is inherently ambiguous, meaning that the same syntactic structure could have multiple valid interpretations.

55 N L C (syntax) Syntax is the study of the rules whereby words or other elements of sentence structure are combined to form grammatical sentences. So a syntactical analysis identifies the various parts of speech in which a word can serve, and which combinations of these can be assembled into sensible sentences.

56 N L C (syntax) A single word can represent multiple parts of speech. Consider an example: Time flies like an arrow. Skip Syntactical Analysis

57 N L C (syntax) To determine what it means we first parse the sentence into its parts. ‘time’ can be used as a noun, a verb, or an adjective. ‘flies’ can be used as a noun, or a verb. ‘like’ can be used as a noun, a verb, a preposition, an adjective, or an adverb. ‘an’ can be used only as an indefinite article. ‘arrow’ can be used as a noun, or a verb.

58 N L C (semantics) ‘time’ adjective “of, relating to, or measuring time” ‘flies’ noun “two-winged insect” ‘like’ verb “find pleasant or attractive” ‘an’ article ‘arrow’ noun “missile having a straight thin shaft with a pointed head at one end and often flight-stabilizing vanes at the other” time flies (not house flies) enjoy an arrow (watching it, chasing it, eating it)

59 N L C (semantics) ‘time’ adjective “of, relating to, or measuring time” ‘flies’ noun “two-winged insect” ‘like’ verb “find pleasant or attractive” ‘an’ article ‘arrow’ noun “missile having a straight thin shaft with a pointed head at one end and often flight-stabilizing vanes at the other” time flies (not house flies) enjoy an arrow (watching it, chasing it, eating it)

60 N L C (semantics) ‘time’ adjective “of, relating to, or measuring time” ‘flies’ noun “two-winged insect” ‘like’ verb “find pleasant or attractive” ‘an’ article ‘arrow’ noun “missile having a straight thin shaft with a pointed head at one end and often flight-stabilizing vanes at the other” time flies (not house flies) enjoy an arrow (watching it, chasing it, eating it)

61 N L C (semantics) ‘time’ adjective “of, relating to, or measuring time” ‘flies’ noun “two-winged insect” ‘like’ verb “find pleasant or attractive” ‘an’ article ‘arrow’ noun “missile having a straight thin shaft with a pointed head at one end and often flight-stabilizing vanes at the other” time flies (not house flies) enjoy an arrow (watching it, chasing it, eating it)

62 N L C (semantics) ‘time’ adjective “of, relating to, or measuring time” ‘flies’ noun “two-winged insect” ‘like’ verb “find pleasant or attractive” ‘an’ article ‘arrow’ noun “missile having a straight thin shaft with a pointed head at one end and often flight-stabilizing vanes at the other” time flies (not house flies) enjoy an arrow (watching it, chasing it, eating it?)

63 N L C (semantics) This interpretation sounds absurd to us, but analysis shows it’s a perfectly logical interpretation of the words. This is problem is referred to as a Lexical Ambiguity. It arises because words have multiple syntactical and semantic associations. In this case there are many syntactically and semantically valid interpretations.

64 Natural Language Comprehension  A natural language sentence can also have a syntactic ambiguity because phrases can be put together in various ways. I saw the Grand Canyon flying to New York.

65 Natural Language Comprehension  A natural language sentence can also have a syntactic ambiguity because phrases can be put together in various ways. I saw the Grand Canyon flying to New York. Is it possible that the Grand Canyon flew to New York?

66 Natural Language Comprehension  Referential ambiguity can occur with the use of pronouns. The brick fell on the computer but it is not broken.

67 Natural Language Comprehension  Referential ambiguity can occur with the use of pronouns. The brick fell on the computer but it is not broken. Since ‘it’ is the subject of the second clause, its referent is the subject of the first clause – ‘the brick’! Are you happy knowing that no harm came to the brick?

68 Robotics  Mobile robotics: The study of robots that move relative to their environment, while exhibiting a degree of autonomy.  In the sense-plan-act (SPA) paradigm the world of the robot is represented in a complex semantic net in which the sensors on the robot are used to capture the data to build up the net. Figure 13.8 The sense-plan-act (SPA) paradigm

69 Subsumption Architecture  Rather than trying to model the entire world all the time, the robot is given a simple set of behaviors each associated with the part of the world necessary for that behavior Figure 13.9 The new control paradigm

70 Subsumption Architecture Figure Asimov’s laws of robotics are ordered.