DNA: Structure, Dynamics and Recognition Richard Lavery Institut de Biologie Physico-Chimique, Paris Les Houches 2004
L1: Biological context, history, basic DNA structure L2: Introductory DNA biophysics and biology L3: DNA dynamics L4: DNA deformation L5: Recognizing DNA Les Houches 2004
DNA: Structure, Dynamics and Recognition L1: Biological context, history, basic DNA structure Les Houches 2004
BIOLOGICAL CONTEXT
140 Mb 3300 Mb 4.4 Mb 0.6 Mb 4.6 Mb
50 mm Escherichia Coli, ≈4.6 Mb VEVRLREDPETFLVQLYQHCPPLARIDSVEREPFIWSQLPTEFTIRQSTGGTMNTQIVP FT DAATCPACLAEMNTPGERRYRYPFINCTHCGPRFTIIRAMPYDRPFTVMAAFPLCPACD FT KEYRDPLDRRFHAQPVACPECGPHLEWVSHGEHAEQEAALQAAIAQLKMGKIVAIKGIG FT GFHLACDARNSNAVATLRARKHRPAKPLAVMLPVADGLPDAARQLLTTPAAPIVLVDKK FT YVPELCDDIAPDLNEVGVMLPANPLQHLLLQELQCPLVMTSGNLSGKPPAISNEQALAD FT LQGIADGFLIHNRDIVQRMDDSVVRESGEMLRRSRGYVPDALALPPGFKNVPPVLCLGA FT DLKNTFCLVRGEQAVLSQHLGDLSDDGIQMQWREALRLMQNIYDFTPQYVVHDAHPGYV FT SSQWAREMNLPTQTVLHHHAHAAACLAEHQWPLDGGDVIALTLDGIGMGENGALWGGEC FT LRVNYRECEHLGGLPAVALPGGDLAAKQPWRNLLAQCLRFVPEWQNYSETASVQQQNWS FT VLARAIERGINAPLASSCGRFFDAVAAALGCAPATLSYEGEAACALEALAASCHGVTHP FT VTMPRVDNQLDLATFWQQWLNWQAPVNQRAWAFHDALAQGFAALMREQATMRGITTLVF Escherichia Coli, ≈4.6 Mb
500 Å E. coli membrane region © David S. Goodsell
DNA Double helix Stores genetic code as a linear sequence of bases ≈ 20 Å in diameter Human genome ≈ 3.3 x 109 bp ≈ 25,000 genes
Biological length scale Chemical bond 1 Å (10-10 m) Amino acid 10 Å (10-9 m) Globular protein 100 Å (10-8 m) Virus 1000 Å (10-7 m) Cell nucleus 1 mm (10-6 m) Bacterial cell 5 mm (10-5 m) Chromosome DNA 10 cm (10-1 m) Biological length scale
Biological length scale If 20 Å 1 cm then ... 1 m 5000 km ... Nucleus 15 m2 room Biological length scale
A "minimal" organism Hutchinson et al. Science 286, 1999, 2165 "We are wondering if we can come up with a molecular definition of life" "The goal is to fundamentally understand the components of the most basic living cell" Craig Venter, founder of Celera Genomics, IBEA and several other gene tech companies Hutchinson et al. Science 286, 1999, 2165
Modelling the budding yeast cell cycle (Tyson & Novak) K.C. Chen et al. Mol. Biol. Cell Cycle 11 (2000) 369 Modelling the budding yeast cell cycle (Tyson & Novak)
580,000 bp 500 genes E-cell project
Molecular machines .... transcriptosome Nanobiotechnology D.S. Goodsell
Nucleosome
A LITTLE HISTORY ...
1865 Gregor Mendel publishes his work on plant breeding with the notion of "genes" carrying transmissible characteristics 1869 "Nuclein" is isolated by Johann Friedrich Miescher à Tübingen in the laboratory of Hoppe-Seyler 1892 Meischer writes to his uncle "large biological molecules composed of small repeated chemical pieces could express a rich language in the same way as the letters of our alphabet" 1920 Recognition of the chemical difference between DNA and RNA Phoebus Levene proposes the "tetranucleotide hypothesis" 1938 William Astbury obtains the first diffraction patters of DNA fibres History of DNA
1944 Oswald Avery (Rockefeller Institute) proves that DNA carries the genetic message by transforming bacteria History of DNA
1950 Erwin Chargaff discovers A/G = T/C History of DNA
1953 Watson and Crick propose the double helix as the structure of DNA based on the work of Erwin Chargaff, Jerry Donohue, Rosy Franklin and John Kendrew History of DNA
Maurice Wilkins – Kings College, London
Rosalind Franklin (in Paris)
X-ray fibre diffraction pattern of B-DNA
Linus Pauling’s DNA
Watson-Crick base pairs Thymine -Adenine Cytosine -Guanine Watson-Crick base pairs
Watson and Crick
It has not escaped our notice … It has not escaped our notice that the specific pairing we have postulated suggests a possible copying mechanism for the genetic material. It has not escaped our notice …
Double helix ?
Dickerson Dodecamer (Oct. 1980)
DNA STRUCTURE
OH ribose H deoxyribose Nucleoside Nucleotide
Nucleotide triphosphates
Nucleotides are linked by phosphodiester bonds Strand has a direction (5'3')
DNA/RNA chemical structure RNA : A,U,G,C + ribose DNA : A ,T,G,C + deoxyribose DNA/RNA chemical structure
Base families Purine (Pur / R) Pyrimidine (Pyr / Y) C5 C4 N7 C6 C5 C6
Watson-Crick base pairs Thymine -Adenine Cytosine -Guanine Watson-Crick base pairs
Base pair dimensions
CGCGTTGACAACTGCAGAATC
Hydration 3’ 5’ 5’ 3’ Antiparallel strands B A A and B DNA allomorphs
MAJOR MINOR DNA grooves
B-DNA (longitudinal view)
R.H. helix B-DNA (lateral view)
A-DNA (longitudinal view)
R.H. helix A-DNA (lateral view)
Z-DNA (longitudinal view)
L.H. helix Z-DNA (lateral view)
Base pairs are rotated in Z-DNA
n0 Backbone dihedrals - I
Dihedral angle definition +60° +10° Staggered Eclipsed Dihedral angle definition
Favoured conformations gauche + gauche - trans Favoured conformations
Backbone dihedrals - II : O3’ – P – O5’ – C5’ g- : P – O5’ – C5’ – C4’ t g : O5’ – C5’ – C4’ – C3’ g+ : C5’ – C4’ – C3’ – O3’ g+ e : C4’ – C3’ – O3’ – P t z : C3’ – O3’ – P – O5’ g- (Y) : O4’ – C1’ – N1 – C2 g- c(R) : O4’ – C1’ – N9 – C4 Backbone dihedrals - II
syn-anti glycosidic conformations
Baird & Tatlock 1901
Medicine Sets Manufactures by Messrs Burroughs, Wellcome & Co.
C5’ ENDO EXO Base Sugar ring puckering
Sugar pucker described as pseudorotation North : C3’-endo East : O4’-endo South : C3’-endo "2 B or not 2 B ...." W. Shakespeare 1601
Pseudorotation Equations Base tan P = (n4 - n1) - (n3 - n0) 2n2 (Sin 36° + Sin72°) Amp = n2 / Cos P Pseudorotation Equations Altona et al. J. Am. Chem. Soc. 94, 1972, 8205
Preferred sugar puckers
Sugar pucker and P-P distance
UNUSUAL DNA STRUCTURES
Alternative base pairs Reversed Watson-Crick Watson-Crick Hoogsteen Reversed Hoogsteen Alternative base pairs
Watson-Crick + Hoogsteen = Base triplet - note C(N3) protonation Watson-Crick + Hoogsteen = Base triplet
Triple helix DNA
Guanine Hoogsteen pairing Base tetraplex
Quadruplex DNA
Inverted repeat can lead to loop formation
Holliday junction DNA cruciform
PNA versus DNA
Peptide Nucleic acid(PNA) Achiral, peptide-like backbone Backbone is uncharged High thermal stability High-specificity hybridization with DNA Resistant to enzymatic degradation Can displace DNA strand of duplex Pyrimidine PNA strands can form 2:1 triplexes with ssDNA Biotechnological applications Peptide Nucleic acid(PNA)
Parallel-stranded DNA
I-DNA: intercalated parallel-stranded duplexes
a and b nucleotide anomers
H OH is not the only change in passing from DNA to RNA ....
Principles of Nucleic Acid Structure, W. Saenger, 1984 Springer-Verlag Nucleic Acid Structure, Ed. S. Neidle, 1999 Oxford University Press DNA Structure and Function, R.R. Sinden, 1994 Academic Press Biochemistry, D. Voet and J.G. Voet, 1998 DeBoeck The Eighth Day of Creation, H.F. Judson, 1996 Cold Spring Harbour Press Books on DNA