Linear Programming – Simplex Method

Slides:



Advertisements
Similar presentations
February 21, 2002 Simplex Method Continued
Advertisements

February 14, 2002 Putting Linear Programs into standard form
IEOR 4004 Midterm Review (part I)
Linear Programming – Simplex Method: Computational Problems Breaking Ties in Selection of Non-Basic Variable – if tie for non-basic variable with largest.
Hillier and Lieberman Chapter 4.
Lecture 3 Linear Programming: Tutorial Simplex Method
L17 LP part3 Homework Review Multiple Solutions Degeneracy Unbounded problems Summary 1.
Dr. Sana’a Wafa Al-Sayegh
1 Introduction to Linear Programming. 2 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. X1X2X3X4X1X2X3X4.
Copyright (c) 2003 Brooks/Cole, a division of Thomson Learning, Inc
Lecture 15 Special cases by Dr. Arshad Zaheer
Linear Programming Fundamentals Convexity Definition: Line segment joining any 2 pts lies inside shape convex NOT convex.
Computational Methods for Management and Economics Carla Gomes Module 6b Simplex Pitfalls (Textbook – Hillier and Lieberman)
The Simplex Method: Standard Maximization Problems
Operation Research Chapter 3 Simplex Method.
Minimization by Dr. Arshad zaheer
Solving Linear Programs: The Simplex Method
Linear Programming (LP)
The Simplex Method.
MIT and James Orlin © Chapter 3. The simplex algorithm Putting Linear Programs into standard form Introduction to Simplex Algorithm.
Water Resources Development and Management Optimization (Linear Programming) CVEN 5393 Feb 25, 2013.
LINEAR PROGRAMMING SIMPLEX METHOD.
The Simplex algorithm.
OR Chapter 3. Pitfalls OR  Selection of leaving variable: a)No restriction in minimum ratio test : can increase the value of the entering.
The Two-Phase Simplex Method LI Xiao-lei. Preview When a basic feasible solution is not readily available, the two-phase simplex method may be used as.
ECE 556 Linear Programming Ting-Yuan Wang Electrical and Computer Engineering University of Wisconsin-Madison March
Chapter 3. Pitfalls Initialization Ambiguity in an iteration
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming: The Simplex Method Chapter 5.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
The Simplex Method Updated 15 February Main Steps of the Simplex Method 1.Put the problem in Row-Zero Form. 2.Construct the Simplex tableau. 3.Obtain.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Chapter 6 Linear Programming: The Simplex Method Section R Review.
1© 2003 by Prentice Hall, Inc. Upper Saddle River, NJ Linear Programming: The Simplex Method.
Solving Linear Programming Problems: The Simplex Method
Linear Programming – Simplex Method
1 1 Slide © 2005 Thomson/South-Western Linear Programming: The Simplex Method n An Overview of the Simplex Method n Standard Form n Tableau Form n Setting.
Chapter 4 Linear Programming: The Simplex Method
Chapter 3 Linear Programming Methods
1 Chapter 4 The Simplex Algorithm PART 2 Prof. Dr. M. Arslan ÖRNEK.
1 THE REVISED SIMPLEX METHOD CONTENTS Linear Program in the Matrix Notation Basic Feasible Solution in Matrix Notation Revised Simplex Method in Matrix.
OR Chapter 8. General LP Problems Converting other forms to general LP problem : min c’x  - max (-c)’x   = by adding a nonnegative slack variable.
University of Colorado at Boulder Yicheng Wang, Phone: , Optimization Techniques for Civil and Environmental Engineering.
An-Najah N. University Faculty of Engineering and Information Technology Department of Management Information systems Operations Research and Applications.
Simplex Method Simplex: a linear-programming algorithm that can solve problems having more than two decision variables. The simplex technique involves.
Part 3. Linear Programming 3.2 Algorithm. General Formulation Convex function Convex region.
LINEAR PROGRAMMING 3.4 Learning goals represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret.
Business Mathematics MTH-367 Lecture 16. Chapter 11 The Simplex and Computer Solutions Methods continued.
Copyright © 2006 Brooks/Cole, a division of Thomson Learning, Inc. Linear Programming: An Algebraic Approach 4 The Simplex Method with Standard Maximization.
Simplex Method Review. Canonical Form A is m x n Theorem 7.5: If an LP has an optimal solution, then at least one such solution exists at a basic feasible.
1 Simplex algorithm. 2 The Aim of Linear Programming A Linear Programming model seeks to maximize or minimize a linear function, subject to a set of linear.
Chapter 4 The Simplex Algorithm and Goal Programming
The Simplex Method. and Maximize Subject to From a geometric viewpoint : CPF solutions (Corner-Point Feasible) : Corner-point infeasible solutions 0.
EMGT 6412/MATH 6665 Mathematical Programming Spring 2016
Solving Linear Program by Simplex Method The Concept
Perturbation method, lexicographic method
10CS661 OPERATION RESEARCH Engineered for Tomorrow.
The Two-Phase Simplex Method
SOLVING LINEAR PROGRAMMING PROBLEMS: The Simplex Method
Chapter 4 Linear Programming: The Simplex Method
ENGM 631 Optimization Ch. 4: Solving Linear Programs: The Simplex Method.
Chapter 3 The Simplex Method and Sensitivity Analysis
Part 3. Linear Programming
Well, just how many basic
Lecture 4 Part I Mohamed A. M. A..
ISyE 4231: Engineering Optimization
Chapter 4 The Simplex Algorithm
Part 3. Linear Programming
Practical Issues Finding an initial feasible solution Cycling
Presentation transcript:

Linear Programming – Simplex Method  

Linear Programming - Review Graphical Method: What is the feasible region? Where was optimal solution found? What is primary limitation of graphical method? Conversion to Standard Form: -

Linear Programming – Review Solving Systems of Linear Equations: What is a basic solution? How did we obtain a basic solution? What is a basic feasible solution? Relationship between graphical and algebraic representation of the feasible region: corner point basic solution

Linear Programming – Review Fundamental insight – the optimal solution to a linear program, if it exists, is also a basic feasible solution. Naïve approach – solve for all basic solutions and find the feasible solution with the largest value (maximization problem). What is the problem with this approach? – there are possible basic solutions, where m is the number of constraints and n is the number of variables.

Linear Programming – Simplex Algorithm Step 1 Convert the LP to standard form. Step 2 Obtain a bfs (if possible) from the standard form. Step 3 Determine whether the current bfs is optimal. Step 4 If the current bfs is not optimal, then determine which nonbasic basic variable should become a basic variable and which basic variable should become a nonbasic variable to find a new bfs with a better objective function value. (pivot operation) Step 5 Use EROs to find the new bfs with the better objective function value. Go back to step 3. Operations Research, Wayne L. Winston

Linear Programming – Simplex Method Review Simplex Handouts

Linear Programming – Simplex Method Minimization Problems: Min Z = cx  (-) Max Z = -cx Ex. Min 2x1 – 3x2 + x3 s.t. x1 + 2x2 < 5 2x1 - 3x3 > 10 x1, x2, x3 > 0 (-)Max -2x1 + 3x2 - x3 s.t. x1 + 2x2 < 5 2x1 - 3x3 > 10 x1, x2, x3 > 0

Linear Programming – Simplex Method: Computational Problems Breaking Ties in Selection of Non-Basic Variable – if tie for non-basic variable with largest relative profit ( ), arbitrarily select incoming variable. Ties in Minimum Ratio Rule (Degeneracy) – if more than one basic variable have same minimum ratio, select either variable to leave the basis. This will result in a basic variable taking on a value of 0. When this occurs, the solution is referred to as a degenerate basic feasible solution. When this occurs, you may transition through more than one simplex tableau with the same objective (Z) value.  

Linear Programming – Simplex Method: Computational Problems Unbounded Solutions – if when performing the minimum ratio rule, none of the ratios are positive, then the solution is unbounded (e.g Max Z = or Min = - ).

Simplex Method – Finding an Initial Basic Feasible Solution Min Z = -3x1 + x2 + x3 s.t. x1 – 2x2 + x3 <= 11 -4x1 + x2 +2x3 >= 3 2x1 - x3 = -1 x1, x2, x3 >= 0 Standard Form: (-) Max Z = 3x1 - x2 - x3 s.t. x1 – 2x2 + x3 + x4 = 11 -4x1 + x2 +2x3 -x5 = 3 -2x1 + x3 = 1 x1, x2, x3, x4, x5 >= 0

Simplex Method – Finding an Initial Basic Feasible Solution (-) Max Z = 3x1 - x2 - x3 s.t. x1 – 2x2 + x3 + x4 = 11 -4x1 + x2 +2x3 -x5 = 3 -2x1 + x3 = 1 x1, x2, x3, x4, x5 >= 0 Only x4 is basic. Introduce artificial variables. s.t. x1 – 2x2 + x3 + x4 = 11 -4x1 + x2 +2x3 -x5 + x6 = 3 -2x1 + x3 + x7 = 1 x1, x2, x3, x4, x5, x6, x7 >= 0

Simplex Method – Solve Using Big-M Method Let M be an arbitrarily large number, then: (-) Max Z = 3x1 - x2 - x3 + 0x4 + 0x5 – Mx6 – Mx7 s.t. x1 – 2x2 + x3 + x4 = 11 -4x1 + x2 +2x3 -x5 + x6 = 3 -2x1 + x3 + x7 = 1 x1, x2, x3, x4, x5, x6, x7 >= 0 Note: If the simplex algorithm terminates with one of the artificial variables as a basic variable, then the original problem has no feasible solution.