High Mountain Water Cerenkov Array in Mexico to detect Extensive Air Showers (HAWC)‏ Humberto Salazar I BUAP, Puebla & INAOE VII SILAFAE Bariloche, January.

Slides:



Advertisements
Similar presentations
Brenda Dingus US Spokesperson Los Alamos National Lab 8 August July 2014 The TeV Sky with HAWC.
Advertisements

The MAGIC telescope and the GLAST satellite La Palma, Roque de los Muchacos (28.8° latitude ° longitude, 2225 m asl) INAUGURATION: 10/10/2003 LAT.
Web: Contact: HAWC is a collaborative effort between institutions in the United States of America.
Proposal Submitted to NSF/DoE HEP Given the large increase in sensitivity for a moderate cost, we have decided to propose to build HAWC. A proposal was.
TeV Observations Of Diffuse Emission Probing Galactic Gamma-Ray Sources Brenda Dingus Los Alamos National Lab Milagro: A Diffuse TeV Observatory TeV Gamma-Ray.
Mathieu de Naurois, H.E.S.S.High Energy Phenomena in the Galacic Center H.E.S.S. Observations of the Galactic Center  The H.E.S.S. Instrument.
Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Synoptic TeV Telescopes Results from Milagro Plans for HAWC.
Wide-Field Gamma-Ray Instruments: Milagro Results Plans for HAWC Gus Sinnis Los Alamos National Lab TeVPA 2008 Beijing Scientific Goals Experimental Techniques.
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
Gus Sinnis HAWC Review December 2007 Milagro a TeV Gamma-Ray Observatory Gus Sinnis Los Alamos National Laboratory.
High Energy  -rays Roger Blandford KIPAC Stanford.
Large Magellanic Cloud, 1987 (51.4 kparsec) SN 1987a after before 2006 Hubble.
Gus Sinnis Los Alamos National Laboratory EAS Arrays in the GLAST Era.
The Milagro Gamma-Ray Observatory By Timothy Willett CROP: Roncalli Division.
U N C L A S S I F I E D High-Energy Astrophysics Probing the Extreme Universe Gus Sinnis P-23.
HAWC Gus Sinnis VHE Workshop UCLA October, 2005 HAWC: A Next Generation Wide-Field VHE Gamma-Ray Telescope.
The Milagro Gamma-Ray Observatory Milagro is a water Cherenkov extensive air shower (EAS) detector located near Los Alamos, NM at 2630m above sea level,
HAWC: A Next Generation All-Sky VHE Gamma-Ray Telescope.
Julie McEnery GLAST Science Lunch Milagro: A Wide Field of View Gamma-Ray Telescope Julie McEnery.
1 Tuning in to Nature’s Tevatrons Stella Bradbury, University of Leeds T e V  -ray Astronomy the atmospheric Cherenkov technique the Whipple 10m telescope.
1 Arecibo Synergy with GLAST (and other gamma-ray telescopes) Frontiers of Astronomy with the World’s Largest Radio Telescope 12 September 2007 Dave Thompson.
Incontri di Fisica delle Alte Energie IFAE 2006 Pavia Vincenzo Vitale Recent Results in Gamma Ray Astronomy with IACTs.
High Energy Astrophysics with the High Altitude Water Cherenkov Experiment John Pretz – Los Alamos National Lab International Astronomical Union Meeting.
Gus Sinnis CTA Workshop, Paris, March 2007 Synoptic TeV Telescopes: Recent Results & Future Plans Gus Sinnis Los Alamos National Laboratory.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Design and status of the Pierre Auger Observatory J. C. Arteaga Velázquez 1, Rebeca López 2, R. Pelayo 1 and Arnulfo Zepeda 1 1 Departamento de Física,
MiniHAWC Jordan Goodman Beijing – June 2006 Jordan Goodman University of Maryland mini- High Altitude Water Cherenkov experiment  miniHAWC.
Gus Sinnis RICAP, Rome June 2007 High Altitude Water Cherenkov Telescope  Gus Sinnis Los Alamos National Laboratory for the HAWC Collaboration.
Milagro Gus Sinnis Milagro NSF Review July 18-19, 2005 Milagro: A Synoptic VHE Gamma-Ray Telescope Gus Sinnis Los Alamos National Laboratory.
Water Cherenkov Technology in Gamma-Ray Astronomy Gus Sinnis Los Alamos National Laboratory.
Erice July 2004Jordan GoodmanUniversity of Maryland Air Shower Gamma Ray Detectors Outline Air Shower Physics –Extensive Air Showers –Gamma/Hadron sep.
High Energy Particle Astrophysics PRC-US Collaboration Summary Report Gus Sinnis David Kieda Gus Sinnis Hu Hongbo Jordan Goodman Min Zha.
Moriond 2001Jordan GoodmanMilagro Collaboration The Milagro Gamma Ray Observatory The Physics of Milagro Milagrito –Mrk 501 –GRB a Milagro –Description.
Milagro Status Report - October October 1998 The Milagro Project Physics Goals Overall Design Milagrisimo - Milagrito - Milagro Comparison of Milagro.
Development of Ideas in Ground-based Gamma-ray Astronomy, Status of Field and Scientific Expectations from HESS, VERITAS, MAGIC and CANGAROO Trevor C.
Gus Sinnis Asilomar Meeting 11/16/2003 The Next Generation All-Sky VHE Gamma-Ray Telescope.
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
Detecting  -ray Sources Brenda Dingus 23 January 2006 Outline: I.Detection Techniques II.Each  -ray is an Image III.Source Detection.
Milagro Jordan Goodman NSF July 2007 The History of Milagro Jordan A. Goodman University of Maryland.
HAWC Andrew Smith - University of Maryland TeV Astrophysics II, August 28,2006 High Altitude Water Cherenkov experiment  HAWC Andrew Smith, University.
Multi-TeV  -ray Astronomy with GRAPES-3 Pravata K Mohanty On behalf of the GRAPE-3 collaboration Tata Institute of Fundamental Research, Mumbai Workshop.
HAWC: A Next Generation All-Sky VHE Gamma-Ray Telescope.
The HAWC Gamma-Ray Observatory Gus Sinnis Los Alamos National Laboratory for the HAWC Collaboration LHAASO Workshop - Beijing, China February 17, 2011.
Indirect Dark Matter Detection with the High Altitude Water Cherenkov Observatory John Pretz for the HAWC Collaboration Los Alamos National Lab Closing.
The Universe >100 MeV Brenda Dingus Los Alamos National Laboratory.
HAWC Science  Survey of 2  sr (half the sky) up to 100 TeV energies Probe knee in cosmic ray spectrum Identify sources of Galactic cosmic rays  Extended.
1st page of proposal with 2 pictures and institution list 1.
A Future All-Sky High Duty Cycle VHE Gamma Ray Detector Gus Sinnis/Los Alamos with A. Smith/UMd J. McEnery/GSFC.
June 6, 2006 CALOR 2006 E. Hays University of Chicago / Argonne National Lab VERITAS Imaging Calorimetry at Very High Energies.
Pheno Symposium, University of Wisconsin-Madison, April 2008John Beacom, The Ohio State University Astroparticle Physics in the LHC Era John Beacom The.
05/02/031 Next Generation Ground- based  -ray Telescopes Frank Krennrich April,
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Sources emitting gamma-rays observed in the MAGIC field of view Jelena-Kristina Željeznjak , Zagreb.
Aous Abdo Ground-based Gamma-ray Astronomy: Towards the Future. Santa Fe, NM May 11–12, 2006 Detection of Tev  -rays from the Cygnus Region with Milagro.
Introduction Active galactic nuclei (AGN) are among the most interesting sources of gamma-rays. At the highest energies, blazars are the most luminous.
Detecting Air Showers on the Ground
Brenda Dingus 20 Oct 2005 Astrophysics with 2 sr and 24/7 VHE Detectors Brenda Dingus for the Milagro and HAWC collaborations.
MAGIC Telescopes - Status and Results 2009/ Isabel Braun Institute for Particle Physics, ETH Zürich for the MAGIC collaboration CHIPP Plenary Meeting.
Jordan Goodman TeV III Venice August 2007 HAWC - A Wide-Field Gamma-Ray Telescope Jordan A. Goodman University of Maryland.
The Large High Altitude Air Shower Observatory LHAASO.
ICRC 2011Ignacio Taboada | Georgia Tech1 Sensitivity of HAWC to Gamma Ray Bursts Ignacio Taboada Georgia Institute of Technology Aug 11, 2011 – ICRC.
The end of the electromagnetic spectrum
Gus Sinnis RICAP, Rome June 2007 The Milagro Observatory: Recent Results & Future Plans Gus Sinnis Los Alamos National Laboratory for the Milagro Collaboration.
Tobias Jogler Max – Planck Institut für Physik The MAGIC view of our Galaxy Tobias Jogler for the MAGIC Collaboration.
TeV Gamma Ray Astrophysics Wei Cui Department of Physics Purdue University.
Roger Blandford KIPAC Stanford
HAWC Science Survey of 2p sr up to 100 TeV energies Extended Sources
Recent results from the Milagro TeV gamma-ray observatory
More on Milagro Observations of TeV Diffuse Emission in Cygnus
Presentation transcript:

High Mountain Water Cerenkov Array in Mexico to detect Extensive Air Showers (HAWC)‏ Humberto Salazar I BUAP, Puebla & INAOE VII SILAFAE Bariloche, January 19, 2009

HAWC observatory with its wide field of view of ~ 2 steradians and nearly 100% duty factor, will enable new observations of the TeV sky. HAWC sensitivity at <1TeV is sufficient to detect flaring active galactic nuclei and search for the predicted prompt emission from gamma-ray bursts.

Outline Gamma ray Observatories Milagro: The first wide angle gamma ray Ovservatory Hawc: Design, status and perspectives.

High Energy Particle Astrophysics What do we know? –Nature accelerates particles to >10 20 eV –Gamma-ray sources accelerate particles to >10 14 eV What do we want to know? –What astrophysical sources accelerate particles? –How do astrophysical sources accelerate particles? –What new high energy physics can we learn from astrophysics?

Producing Gamma Rays: Astrophysical Particle Accelerators HST Image of M87 (1994)‏ Black Hole producing relativistic jet of particles Binary Neutron Star Coalescing Artist Conception of Short GRBs Spinning Neutron Star powering a relativistic wind Massive Star Collapsing into a Black Hole SuperComputer Calculation Chandra Image of Crab HESS TeV + x-ray TeV image of Vela Jr. Supernova Remnant

1509 fotones >10 GeV Space based Observatories Third EGRET Catalog Radio cuasares y objetos Bl Lac Fuentes EGRET no identificadas Pulsares LMC Ráfaga solar

Crab pulsar Radio Crab nebula Supernova remanent, Visible Rayos X

150 meters Atmospheric interactions High energy  rays induce atmospheric electromagnetic cascades Cosmic rays induce hadronic cascades Charge particles generate cerenkov radiation in air (or in water )‏

Cherenkov radiation

Complementary detectors for TeV photons Atmospheric Cerenkov telescopesSurface detectors Eenergíy TeV Área > 10 4 m 2 Hadron rejection > 99% Angular resolutión 0.05 o Energy resolution ~15% Aperture sr Duty Cycle 10% Energy TeV Área > 10 4 m 2 Hadron rejection > 95% Angular resolution 0.3 o o Energy resolution ~50% Aperture > 2 sr Duty Cycle > 90% High resolution spectra Detailed studies Exact location Deep scanning of the sky (limited regions)‏ Homogéneous and full sky scanning Extended sources GRBs blazares‏ Multi-wavelenght observations

Atmospheric Cherenkov Telescopes Since 1960's Hadron / Photon Discrimination ( “imaging”)‏ (Crab 0.7 TeV - Weekes et al. 1989)‏ Mt Hopkins

 Whipple: imaging  Hegra: Stereo  HESS [  Veritas]: Telescope array (~Whipple)  MAGIC: 17m antenna low threshold ( 25 GeV!): I+II (2003)‏ New Atmospheric Cherenkov Telescopes CTA + AGIS: Cherenkov Telescope arrays

Hinton, rapporteur ICRC 2007

Water Cherenkov detector (Milagro)‏ Detect cascade particles at ground –Electrons and muons (Cherenkov radiation) –   e  Cherenkov radiation Large area and altitude Wide field of view (45º zenith)‏ ~24 hrs / day

(1)Department of Physics, University of Wisconsin (2)Current Address: Department of Physics, University of Utah (3)Santa Crux Institute for Particle Physics, University of California, Santa Cruz (4)Current address: Max-Plank-Institute fur Kernphysik (5)Department of Physics, University of Maryland (6)Los Alamos National Laboratory (7)Department of Physics and Astronomy, George Mason University (8)Department of Physics, New York University (9)Department of Physics and Astronomy, Michigan State University (10)Current address: NASA Goddard Space Flight Center (11)Current address: Massachusetts Institute of Technology (12)Department of Physics, University of New Hampshire (13)Department of Physics and Astronomy, University of California, Irvine D. Berley, 5 E. Blaufuss 5, D.G. Coyne, 3 T. DeYoung, 3,5 B.L. Dingus, 6 R.W. Ellsworth, 7 J.A. Goodman 5, C.P. Lansdell, 5 J.T. Linnemann, 9 J.E. McEnery, 1,10 A.I. Mincer, 8 M.F. Morales, 3,11 P. Nemethy, 8 D. Noyes, 5 J.M. Ryan, 12 F.W. Samuelson, 6 P.M. Saz Parkinson, 3 A. Shoup, 13 G. Sinnis, 6 A.J. Smith, 5 G.W. Sullivan, 5 D.A. Williams, 3 X.W. Xu 6 and G.B. Yodh 13 MILAGRO: Water Cherenkov Detector 50m  80 m at 2850m

Milagro 8 meters e  80 meters 50 meters First water Cherenkov detector (gammas)‏ Monitoring at TeV's 2600m masl 898 detectors – 450(t)/273(b) pool – 175 Water tanks (outriggers)‏ 4000 m 2 / 4.0x10 4 m TeV Energy 1700 Hz event rate 0.5 o -1.4 o angular resolution 95% hadron rejection

MILAGRO detector Operating since 1999 untill 2008

Crab Nebula Mrk 421 Cygnus Region

Mrk years data: Jul May 2007 Average flux 67% of Crab Milagro - Events/day ASM Flux cts/s MJD /1/20001/1/20011/1/2002 1/1/2003 1/1/2004 1/1/2005 1/1/2006 1/1/2007 May-Jul 2005 Exces 5  during low X ray activity phase Smith et al. ICRC 2007

HAWC Scientific case Deep scanning of 2/3 of the  Sky Galactic plane – Cygnus region – Galactic center Diffuse sources and supernova remanents Quasars  Ray Burst Solar flares Dark matter search Requirements Dimensions: 150m  150m  4.8m  100,000 m 3 water Light tight Site 4000masl –Sierra Negra 10 years operation 15xSensitivity of Milagro

HAWC Collaboration HAWC-MX INAOE UNAM: –Instituto de Astronomía –Instituto de Física –Instituto de Geofísica –Instituto de Ciencias Nucleares –Centro Geociencias (*)‏ –DGSCA Benemérita Univ. Autónoma Puebla Universidad de Guanajuato CINVESTAV Universidad Michoacana SNH UAM Iztapalapa (*)‏ Universidad Autónoma de Chiapas [Universidad de Guadalajara] HAWC-US Maryland University U. California, Irvine U. California, Santa Cruz Michigan State University George Mason Univ. Los Alamos National Laboratory University of New Hampshire Penn. State University University of Utah University of New Mexico NASA/GSFC + Universita di Torino, Italia + IAFE & Balseiro Bariloche, Argentina

HAWC site Closer to equator:  sur = 4  cos(lat) sin(  )  4  (2/3)‏ - 40% overlap with HESS (Galactic plane) - 90% IceCube overlap - 100% overlap with Whipple Strip Survey + VERITAS Cygnus Survey 3º zenith Galactic 48 o

HAWC & IceCube HAWC y IceCube same energy range Hadronic Cascades similar fluxes of photons and neutrinos  HAWC catalog at TeV candidates for IceCube. Alert for transient phenomena (GRB), and flares to search neutrinos with Ice Cube

El sitio de HAWC Latitud: 18º59’44” Longitud: 97º18’38” Altura: 4098m. 5610m. 4580m. 4km

1 km Camino, electricidad e Internet del GTM GTM

900 opaque tanks 5m diammeter 4.3m Height 150m x 150m (78% cov.)‏ Reuse of Milagro PMTs & FE electronics

Detecto design Milagro: 450 PMT (25x18) capa superficie (1.4m) ‏ 273 PMT (19x13) capa profunda (5.5m) ‏ 175 PMT outriggers Á rea Instrumentada: ~40,000m 2 Separaci ó n PMTs: 2.8m Á rea superficie:3500m 2 Á rea profunda:2200m 2 HAWC: 900 PMTs (30x30) ‏ Separaci ó n 5.0m Capa ú nica a profundidad 4m Á rea instrumentada: 22,500m 2 Separaci ó n PMTs: 5.0m Á rea superficie:22,500m 2 Á rea profunda:22,500m 2 HAWCMilagro

Tanks option Cheap & modular –Data adquisition since R&D phase –Water filling ~5 years As sensitive as Milagro with ¼ of instrumentation. Expandible at least two times more Muon - adelgazado 1/ MeV  - adelgazado 1/200 Shower plane Shower particles Cherenkov Photons

Steel Pipe with Bag Liner Steel pipe can be fabricated on the site up to 7.3m(24’) diameter Top Area of 7.3 m dia is equal to that of 4(2) tanks of 3.6(5)m dia 4.5m high pipe

Hadron rejection  /hadrón Rejection parameter  /hadrón: C = nHit/cxPE –nHit = detector hits –cxPE = (PEs) >30m from the core Gammas Protons C = 12.0C = 16.3C = 7.5C = 9.7 C = 0.6 C = 3.2C = 1.6

Sky scan HAWC survey vs HESS y VERITAS. HAWC M é xico (19 O N). HESS & Veritas Sensitivity for point sources (red) and extended 0.25 O (green).

Blazar Monitoring HAWC can measure AGNs variability and gives alerts. AGN within ~ 3  sr will be observedr ~ 5 hrs / day. HAWCobservations will be continous, without any interruptions. Sensitivity 5  HAWC is (10,1,0.1) Crab in (3 min, 5 hr, 1/3 año)‏ Observations of Mrk421 with Cherenkov telescopes 1 month

HESS J TeV  =-2.3 Highest energy ~20 TeV Simulated HAWC data for 1 year with 40 TeV exponential cutoff

Dark matter particles anhilation: Neutralino WIMP,  fromSUSY 50 GeV< m  < ~ TeV HAWC mapping  3  sr homogeneous exposure — Galactic halo, close group of galaxies (dwarf), cumuls... HAWC Galactico center monitoring Dark Matter search q q... ... Z   lines?  

Conclusions Milagro has demonstrated success of the water Cherenkov technique Discovery of TeV emission from the Galactic plane Image of TeV emission from the Cygnus region 7 New Candidate TeV Sources Future Plan is HAWC Building on expertise with Milagro Design improvements in Size, Altitude, Curtains... >10x Milagro sensitivity HAWC is Synergistic Component of Particle Astrophysics Portfolio Gamma-rays point back to astrophysical accelerator Identify which of GLASTs 1000s of sources extend to TeV energies and monitoring these sources daily Determine targets for the Atmospheric Cherenkov Telescopes to use their enhanced angular and energy resolution Improve IceCube sensitivity by identifying flaring sources