ARIES-Advanced Tokamak Power Plant Study Physics Analysis and Issues Charles Kessel, for the ARIES Physics Team Princeton Plasma Physics Laboratory U.S.-Japan.

Slides:



Advertisements
Similar presentations
Physics Basis of FIRE Next Step Burning Plasma Experiment Charles Kessel Princeton Plasma Physics Laboratory U.S.-Japan Workshop on Fusion Power Plant.
Advertisements

Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
Stability, Transport, and Conrol for the discussion Y. Miura IEA/LT Workshop (W59) combined with DOE/JAERI Technical Planning of Tokamak Experiments (FP1-2)
Who will save the tokamak – Harry Potter, Arnold Schwarzenegger, Shaquille O’Neal or Donald Trump? J. P. Freidberg, F. Mangiarotti, J. Minervini MIT Plasma.
Introduction to Spherical Tokamak
Discussion on application of current hole towards reactor T.Ozeki (JAERI) Current hole plasmas were observed in the large tokamaks of JT-60U and JET. This.
Progress in Configuration Development for Compact Stellarator Reactors Long-Poe Ku Princeton Plasma Physics Laboratory Aries Project Meeting, June 16-17,
Physics Analysis for Equilibrium, Stability, and Divertors ARIES Power Plant Studies Charles Kessel, PPPL DOE Peer Review, UCSD August 17, 2000.
2010 US-Japan Workshop on Fusion Power Plants and Related Advanced Technologies at UCSD CA, US, Feb.23-24, Commissioning scenario including divertor.
Physics of fusion power
Proposals for Next Year’s MFE Activities C. Kessel, PPPL ARIES Project Meeting, Sept. 24, 2000.
Characteristics of Commercial Fusion Power Plants Results from ARIES-AT Study Farrokh Najmabadi Fusion Power Associates Annual Meeting & Symposium July.
Optimization of a Steady-State Tokamak-Based Power Plant Farrokh Najmabadi University of California, San Diego, La Jolla, CA IEA Workshop 59 “Shape and.
Critical Physics Issues for DEMO Max-Planck-Institut für Plasmaphysik L.D. Horton with thanks to the speakers at the recent European Fusion Physics Workshop.
ARIES-ACT1 preliminary plasma description C. Kessel, PPPL ARIES Project Meeting, October 13, 2011.
Physics of fusion power Lecture 8 : The tokamak continued.
Recent Results of Configuration Studies L. P. Ku Princeton Plasma Physics Laboratory ARIES-CS Project Meeting, November 17, 2005 UCSD, San Diego, CA.
Highlights of ARIES-AT Study Farrokh Najmabadi For the ARIES Team VLT Conference call July 12, 2000 ARIES Web Site:
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
1 MHD for Fusion Where to Next? Jeff Freidberg MIT.
C. Kessel Princeton Plasma Physics Laboratory For the NSTX National Team DOE Review of NSTX Five-Year Research Program Proposal June 30 – July 2, 2003.
Y. Sakamoto JAEA Japan-US Workshop on Fusion Power Plants and Related Technologies with participations from China and Korea February 26-28, 2013 at Kyoto.
MHD Issues and Control in FIRE C. Kessel Princeton Plasma Physics Laboratory Workshop on Active Control of MHD Stability Austin, TX 11/3-5/2003.
Advanced Tokamak Plasmas and the Fusion Ignition Research Experiment Charles Kessel Princeton Plasma Physics Laboratory Spring APS, Philadelphia, 4/5/2003.
TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya , Japan 1.
Analysis and Simulations of the ITER Hybrid Scenario C. Kessel, R. Budny, K. Indireshkumar Princeton Plasma Physics Laboratory, USA ITPA Topical Group.
1 Modeling of EAST Divertor S. Zhu Institute of Plasma Physics, Chinese Academy of Sciences.
Advanced Tokamak Regimes in the Fusion Ignition Research Experiment (FIRE) 30th Conference on Controlled Fusion and Plasma Physics St. Petersburg, Russia.
Integrated Modeling and Simulations of ITER Burning Plasma Scenarios C. E. Kessel, R. V. Budny, K. Indireshkumar, D. Meade Princeton Plasma Physics Laboratory.
Discussions and Summary for Session 1 ‘Transport and Confinement in Burning Plasmas’ Yukitoshi MIURA JAERI Naka IEA Large Tokamak Workshop (W60) Burning.
ITER Standard H-mode, Hybrid and Steady State WDB Submissions R. Budny, C. Kessel PPPL ITPA Modeling Topical Working Group Session on ITER Simulations.
Heating and Current Drive Systems for ARIES-AT T.K. Mau University of California, San Diego ARIES Project Meeting September 18-20, 2000 Princeton Plasma.
Current Drive for FIRE AT-Mode T.K. Mau University of California, San Diego Workshop on Physics Issues for FIRE May 1-3, 2000 Princeton Plasma Physics.
ARIES-AT Physics Overview presented by S.C. Jardin with input from C. Kessel, T. K. Mau, R. Miller, and the ARIES team US/Japan Workshop on Fusion Power.
PF1A upgrade physics review Presented by D. A. Gates With input from J.E. Menard and C.E. Kessel 10/27/04.
Global Stability Issues for a Next Step Burning Plasma Experiment UFA Burning Plasma Workshop Austin, Texas December 11, 2000 S. C. Jardin with input from.
Physics of fusion power Lecture 9 : The tokamak continued.
Simulation and Analysis of the Hybrid Operating Mode in ITER C. Kessel, R. Budny, and K. Indireshkumar Princeton Plasma Physics Laboratory Symposium On.
1) Disruption heat loading 2) Progress on time-dependent modeling C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD, 4/4/2011.
Stabilizing Shells in ARIES C. E. Kessel Princeton Plasma Physics Laboratory ARIES Project Meeting, 5/28-29/2008.
ASIPP HT-7 The effect of alleviating the heat load of the first wall by impurity injection The effect of alleviating the heat load of the first wall by.
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
ITER STEADY-STATE OPERATIONAL SCENARIOS A.R. Polevoi for ITER IT and HT contributors ITER-SS 1.
RFX workshop / /Valentin Igochine Page 1 Control of MHD instabilities. Similarities and differences between tokamak and RFP V. Igochine, T. Bolzonella,
Systems Analysis Development for ARIES Next Step C. E. Kessel 1, Z. Dragojlovic 2, and R. Raffrey 2 1 Princeton Plasma Physics Laboratory 2 University.
The influence of non-resonant perturbation fields: Modelling results and Proposals for TEXTOR experiments S. Günter, V. Igochine, K. Lackner, Q. Yu IPP.
Improved performance in long-pulse ELMy H-mode plasmas with internal transport barrier in JT-60U N. Oyama, A. Isayama, T. Suzuki, Y. Koide, H. Takenaga,
MCZ Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2,
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
045-05/rs PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION Taming The Physics For Commercial Fusion Power Plants ARIES Team Meeting.
MHD Issues and Control in FIRE C. Kessel Princeton Plasma Physics Laboratory Workshop on Active Control of MHD Stability Austin, TX 11/3-5/2003.
SMK – APS ‘06 1 NSTX Addresses Transport & Turbulence Issues Critical to Both Basic Toroidal Confinement and Future Devices NSTX offers a novel view into.
18th International Spherical Torus Workshop, Princeton, November 2015 Magnetic Configurations  Three comparative configurations:  Standard Divertor (+QF)
FIRE Advanced Tokamak Progress C. Kessel Princeton Plasma Physics Laboratory NSO PAC 2/27-28/2003, General Atomics 1.0D Operating Space 2.PF Coils 3.Equilibrium/Stability.
Advanced Tokamak Modeling for FIRE C. Kessel, PPPL NSO/PAC Meeting, University of Wisconsin, July 10-11, 2001.
Page 1 of 9 ELM loading conditions and component responses C. Kessel and M. S. Tillack ARIES Project Meeting 4-5 April 2011.
Pedestal Characterization and Stability of Small-ELM Regimes in NSTX* A. Sontag 1, J. Canik 1, R. Maingi 1, J. Manickam 2, P. Snyder 3, R. Bell 2, S. Gerhardt.
AES, ANL, Boeing, Columbia U., CTD, GA, GIT, LLNL, INEEL, MIT, ORNL, PPPL, SNL, SRS, UCLA, UCSD, UIIC, UWisc FIRE Collaboration FIRE.
1 V.A. Soukhanovskii/IAEA-FEC/Oct Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D by V.A. Soukhanovskii 1, with S.L. Allen.
BACKGROUND Design Point Studies for Future Spherical Torus Devices Design Point Studies for Future Spherical Torus Devices C. Neumeyer, C. Kessel, P. Rutherford,
Long Pulse High Performance Plasma Scenario Development for NSTX C. Kessel and S. Kaye - providing TRANSP runs of specific discharges S.
Compact Stellarators as Reactors J. F. Lyon, ORNL NCSX PAC meeting June 4, 1999.
Features of Divertor Plasmas in W7-AS
Reduction of ELM energy loss by pellet injection for ELM pacing
A.D. Turnbull, R. Buttery, M. Choi, L.L Lao, S. Smith, H. St John
Influence of energetic ions on neoclassical tearing modes
Current Drive and Plasma Rotation Considerations for ARIES-AT
New Results for Plasma and Coil Configuration Studies
New Development in Plasma and Coil Configurations
No ELM, Small ELM and Large ELM Strawman Scenarios
Presentation transcript:

ARIES-Advanced Tokamak Power Plant Study Physics Analysis and Issues Charles Kessel, for the ARIES Physics Team Princeton Plasma Physics Laboratory U.S.-Japan Workshop on Fusion Power Plant Design, University of Tokyo March 29-31, 2001

ARIES-AT Physics Team UCSD –T. K. Mau –R. Miller –F. Najmabadi PPPL –S. Jardin –C. Kessel GA –V. Chan –M. Chu –R. La Haye –L. Lao –T. Petrie –G. Staebler

Objectives for ARIES-AT Physics Extend the physics basis for ARIES-RS to increase  and decrease P CD –Use 99% flux surface from free-boundary equilibrium –Use more flexible plasma pressure profile description –Increase plasma triangularity –Increase plasma elongation –Eliminate HHFW current drive

Objectives for ARIES-AT Physics Include more detailed analysis of critical physics issues –Kink stabilization, RWM analysis with rotation and feedback control –NTM assessment –Comparison of kinetic profiles with experiments and Gyro-Landau-Fluid Model –Edge plasma/SOL/Divertor modelling –Plasma edge assumption, L-mode and H-mode

ARIES-RS and AT Parameters

ARIES-AT Equilibrium

Use 99% flux surface from free- boundary equilibrium in fixed boundary equilibrium and stability analysis Old method used 95% surface and analytic plasma boundary 99% plasma surface has stronger shaping 99% plasma surface contains higher order shaping from realistic PF coils 99% plasma volume is consistent with free- boundary plasma

Expand the plasma pressure profile description More flexible pressure profile allows better bootstrap alignment and higher ballooning  limits simultaneously The HHFW current drive could then be eliminated ARIES-AT ARIES-RS

Minimum CD power does not occur at the highest  Reduction of dp/d  near the plasma edge for ballooning stability reduced bootstrap current there Higher  N leads to excessive bootstrap current near plasma center requiring broader density profiles These lead to larger externally driven current at highest  ’s

Increasing the plasma triangularity leads to higher  Higher  increases the  N for ballooning modes, and increases the plasma current for fixed q 95, while higher  enhances the effect  N (Ip/aB)

Increasing the plasma elongation leads to higher  Higher  leads to higher  N for ballooning modes when  is less than so long at  is high enough, however  continues to rise due to the strong increase in Ip

The plasma elongation is limited by the vertical instability Vertical stability analysis showed that we could have  X up to with tungsten conductors a from the plasma boundary which is inside the blanket

ARIES-AT vertical stability and control solution Partial tungsten shells on the inboard and outboard sides, 4 cm thick, at 1100 degC. Feedback control coils are located behind the sheild. For 30 MVA limit we produce a large range of plasmas

External kink stability is provided by a conducting shell and feedback coils For  >2.3 the conducting shell must move much closer to the plasma, and higher  N leads to a closer shell and higher limiting n (toroidal mode number)

The location of the conducting wall is affected by triangularity Higher  has allowed us to place the conducting shell further from the plasma, at the same location as the vertical stabilizer

From theory rotation of the plasma with a conducting shell might stabilize the external kink mode ARIES-AT requires 9% of the Alfven speed, which is difficult to provide, and experiments indicate it may not work

ARIES-AT uses feedback to stabilize the external kink modes Modelled after DIII-D C-coil approach Tungsten shells on outboard side slow the kink mode growth rate creating a RWM Feedback coils are 8 (or 16) window coils on the outboard side Feedback coils span 60 deg poloidally about the midplane and are outside the shield Estimated power requirements are about 10 MW Only n=1 has been addressed

External current drive is required on axis and near the plasma edge ICRF/FW on-axis CD; 96 MHz, N || =2, P CD =5 MW,  =0.032 A/W LHCD off-axis CD; 3.6 GHz, N || = , P CD =24.5 MW,  = A/W; 2.5 GHz, N || =5.0, P CD =12.5 MW,  =0.013 A/W

Scaling of the CD power with temperature and Zeff is used to find the best operating point CD efficiency includes bootstrap current effect Higher Zeff reduces divertor heat load Higher temperature improves CD efficiency and leads to thermally stable operating points N || were varied for this scan

Alternate CD sources are examined for plasma rotation and current profile control 120 keV NBI provides plasma rotation and current for  >0.6, P(NBI)=44 MW for 1.15 MA HHFW at 20  ci provides current at  = which is useful for control of q min and r/a(q min ), P(HHFW)=20 MW for 0.4 MA

Neoclassical tearing modes must be stabilized to reach ideal MHD  limits A combination of the LHCD current profile modification and ECCD at the 5/2 is expected to stabilize the NTM (plot below is H-mode edge), while 3/1 is in very high collisionality region

Examination of assumed T and n profiles and those theoretically predicted by GLF23 Density is input Temperature is determined, found to be close to assumed profile GLF23 is theory based predictive model including ITG, TEM, and ETG turbulence

Comparison of L-mode and H-mode plasma edges H-mode edge has higher T, giving more j(bootstrap), 30% lower I CD H-mode edge is unstable to 10 < n < 25 kink/ballooning/peeling modes leading to ELM’s H-mode has higher ion T at plasma separatrix which aggravates divertor heating H-mode has significant j(bootstrap) at 5/2 and 3/1 surfaces leading to NTM’s H-mode has higher edge density leading to larger radiated power fraction from plasma

Plasma edge / SOL / Divertor solution must satisfy physics and engineering constraints P(plasma) = 388 MW SOL width cm thick 8:1 OB/IB power split Q(first wall) < 0.45 MW/m2 Q(div) < 5-6 MW/m2

Divertor heat loads are too high with no techniques for enhanced radiation For radiated power fraction of 0.3 from plasma core (bremsstrahlung + cyclotron + line from Ar) : Q(first wall) < 0.4 MW/m2, Q(OB div) < 14 MW/m2, Q(IB div) < 3.5 MW/m2

Radiating plasma power is required to obtain workable divertor solutions Radiating mantle, Frad=0.75, Q(fw)>0.9 MW/m2, Q(OB div)>5 MW/m2, Q(IB div)>1.2 MW/m2 --> Ar (core) Radiating divertor, Frad=0.36, Frad(div)=0.43, Q(fw) Ar (divertor)

POPCON plot for ARIES-AT P(fus) = 1760 MW P(alpha) = 351 MW P(brem) = 55 MW P(cyc) = 18 MW P(line) = 67 MW P(aux) = 37 MW H(89p) = 2.65 H(98y) = 1.35  E = 2.0 s  p*/  E = 10.0 n/nGr = 1.0 Zeff = 1.85

PF coil locations and currents are optimized with maintenance constraints

ARIES-AT Physics Issues and New Experimental Results Neutral particle control can allow the plasma density to exceed the Greenwald limit without confinement degradation (DIII-D, TEXTOR). Helium particle control is demonstrated with pumped divertors giving  p */    (DIII-D, JT- 60)  Detachment of inboard strike point plasma allows high triangularity (DIII-D). LHCD is shown to stabilize neoclassical tearing modes (COMPASS, ECCD on ASDEX-U,DIII-D). Vertical and inboard pellet launch show better penetration with lower speed (ASDEX-U, DIII-D).

ARIES-AT Physics Issues and Experimental Results RWM n=1 kink feedback control experiments continue on DIII-D (if successful n=2 will set the  -limit) Controlled impurity effects on the plasma edge, SOL, and divertor continue on many tokamaks Experiments on the behavior of Internal Transport Barriers (ITB) through control of turbulence will lead to control of T and n profiles (JET, JT-60U, DIII-D, ASDEX-U)

A High , High f BS Configuration Have Been Developed as the Physics Basis for Advanced Tokamak Fusion Power Plants High accuracy equilibria Large ideal MHD database over profiles, shape and aspect ratio RWM stable with wall/rotation or wall/feedback control NTM stable with L-mode edge and LHCD Bootstrap current consistency using advanced bootstrap models External current drive Vertically stable and controllable with modest power (reactive) Modest core radiation with radiative SOL/divertor Accessible fueling No ripple losses 0-D consistent startup Rough kinetic profile consistency with RS /ITB experiments, examining GLF23 model consistency Several assumptions based on experimental/theoretical results