ViSEvAl ViSualisation and EvAluation

Slides:



Advertisements
Similar presentations
WHAT IS ELINK? Thermoflow, Inc.
Advertisements

XS - Platform What is XS – Manager ?
A Natural Interactive Game By Zak Wilson. Background This project was my second year group project at University and I have chosen it to present as it.
ETISEO, Nice, May PETS International Workshops on Performance Evaluation of Tracking and Surveillance James Ferryman Computational Vision Group.
ETISEO Benoît GEORIS and François BREMOND ORION Team, INRIA Sophia Antipolis, France Lille, December th 2005.
PETS’05, Beijing, October 16 th 2005 ETISEO Project Ground Truth & Video annotation.
 Copyright 2005 Digital Enterprise Research Institute. All rights reserved. The Web Services Modeling Toolkit Mick Kerrigan.
 Copyright 2005 Digital Enterprise Research Institute. All rights reserved. The WSML Editor Plugin to the Web Services Modeling Toolkit Mick.
WEXTOOL User Guide v1.0 E.P. PLANETE B.B.R.. Plan Introduction & Architecture of Wextool Installation Scenario description Experimentation phase Saving/Synchronizing.
1 OBJECTIVES To generate a web-based system enables to assemble model configurations. to submit these configurations on different.
INRETS, Villeneuve d’Ascq, December 15 th -16 th 2005 ETISEO Annotation rules Data structure Annotation tool and format Ground truth creation rules Reference.
Quicktime Howell Istance School of Computing De Montfort University.
Video summarization by video structure analysis and graph optimization M. Phil 2 nd Term Presentation Lu Shi Dec 5, 2003.
Supervised by Prof. LYU, Rung Tsong Michael Department of Computer Science & Engineering The Chinese University of Hong Kong Prepared by: Chan Pik Wah,
Explore the Dreamweaver Workspace View a Web page and use Help Plan and Define a Web site Add a Folder and Pages, and set the Home page Create and View.
Face Recognition and Biometric Filters By Fred_the_token Identity Confirmed: Osama bin Laden.
Trinity College Dublin PixelGT: A new Ground Truth specification for video surveillance Dr. Kenneth Dawson-Howe, Graphics, Vision and Visualisation Group.
The UNIX File System.
OpenGL Brian Farrimond Robina Hetherington. What is OpenGL A specification of a set of functions for drawing graphics –Names of functions –What information.
Video in Processing David Meredith Aalborg University.
Introducing the LEO 1400 Series
2007 Adobe Systems Incorporated. All Rights Reserved. 1 Joe Berkovitz VP Engineering Allurent, Inc. Continuous Integration with Flex, FlexUnit, and Ant.
Kalman Tracking for Image Processing Applications Student : Julius Oyeleke Supervisor : Dr Martin Glavin Co-Supervisor : Dr Fearghal Morgan.
Augmented Reality and 3D modelling Done by Stafford Joemat Supervised by Mr James Connan and Mr Mehrdad Ghaziasgar.
Object detection, tracking and event recognition: the ETISEO experience Andrea Cavallaro Multimedia and Vision Lab Queen Mary, University of London
Using Group Policy to Manage User Environments. Overview Introduction to Managing User Environments Introduction to Administrative Templates Assigning.
VueCentric Architecture
Dani Vainstein & Monika Arora Gautam 1 Utils Layer Building Library Functions.
INRIA, Nice. December 7 th -8 th 2006 Evaluation protocol Evaluation process.
ViPER Video Performance Evaluation Toolkit viper-toolkit.sf.net.
Project Source Code Structure and Build Process ● Remember consistency matters as source code structure, build process, and release processes are all intertwined.
Students: Avner Barr, Eitan Vadergorn Supervisor: Rami Mankevich Lecturer in Charge: Chaim Gotsman.
Copyright© Jeffrey Jongko, Ateneo de Manila University Android.
Automatic Generation Tools UNICOS Application Builder Overview 11/02/2014 Ivan Prieto Barreiro - EN-ICE1.
Multimedia Digital Library Marcia Johnson. Collection 25 text documents 25 text documents In HTML, PDF, TXT formats (source: Project Gutenberg) In HTML,
The Pipeline Processing Framework LSST Applications Meeting IPAC Feb. 19, 2008 Raymond Plante National Center for Supercomputing Applications.
Marcel Casado NCAR/RAP WEATHER WARNING TOOL NCAR.
1 PyMOL Evolutionary Trace Viewer 1.1 Lichtarge Lab Sept. 13, 2010.
Opton 4 short presentation1 Opton 4 User friendly operating software for Symmetron’s Stylitis data loggers.
Video Event Recognition Algorithm Assessment Evaluation Workshop VERAAE ETISEO – NICE, May Dr. Sadiye Guler Sadiye Guler - Northrop Grumman.
ViPER Video Performance Evaluation Resource University of Maryland.
ETISEO Benoît GEORIS, François BREMOND and Monique THONNAT ORION Team, INRIA Sophia Antipolis, France Nice, May th 2005.
VideoForge An image processing system. Contents Current state of the art IntroductionTiers Base Base Core Core Modules Modules User interface Interactive.
Project on Visual Monitoring of Human Behavior and Recognition of Human Behavior in Metro Stations with Video Understanding M. Thonnat Projet ORION INRIA.
ENTERFACE 08 Project 1 “MultiParty Communication with a Tour Guide ECA” Mid-term presentation August 19th, 2008.
RPMS - EHR v1.1 Techie Class Really Powerful at Measuring Stuff.
1 Getting Started Exercise Part 1. 2 Profiles related to the exercise When starting use archive profile: GettingStarted_Start.zip The fully completed.
Greenstone Internals How to Build a Digital Library Ian H. Witten and David Bainbridge.
Implementation of a Relational Database as an Aid to Automatic Target Recognition Christopher C. Frost Computer Science Mentor: Steven Vanstone.
Afresco Overview Document management and share
Recent Advances in ViPER David Mihalcik David Doermann Charles Lin.
Managing File Resource Using File Server Resource Manager Chapter 9 Advance Computer Network Lecture Sorn Pisey
ViPER Video Performance Evaluation Toolkit viper-toolkit.sf.net.
Drilling Visualisation API. Application / API One main desktop application Possibility to switch to VR mode (wand + head tracking + stereo) Possibility.
Final Year Project. Project Title Kalman Tracking For Image Processing Applications.
Open project in Microsoft Visual Studio → build program in “Release” mode.
ViPER Video Annotation and Performance Evaluation viper-toolkit.sf.net.
Hyperion Artifact Life Cycle Management Agenda  Overview  Demo  Tips & Tricks  Takeaways  Queries.
ETISEO François BREMOND ORION Team, INRIA Sophia Antipolis, France.
Hands-On Microsoft Windows Server 2008 Chapter 5 Configuring Windows Server 2008 Printing.
XML Device Description PP a-MMA_XMLDeviceDescriptionWorkShop.pptx M. Marchhart 1 Workshop.
(1) Code Walkthrough robocode-pmj-dacruzer Philip Johnson Collaborative Software Development Laboratory Information and Computer Sciences University of.
OSSIM Technology Overview Mark Lucas. “Awesome” Open Source Software Image Map (OSSIM)
Maven. Introduction Using Maven (I) – Installing the Maven plugin for Eclipse – Creating a Maven Project – Building the Project Understanding the POM.
Air Plugins Extending and customizing uDeploy (IBM UrbanCode Deploy)
Rotoscoping Senior Capstone Project | Ted Trisco
REAL-TIME DETECTOR FOR UNUSUAL BEHAVIOR
Tasks processing Strong participation . Large results comparison on
Evaluation of UMD Object Tracking in Video
Lab 8: GUI testing Software Testing LTAT
Presentation transcript:

ViSEvAl ViSualisation and EvAluation

Overview What is evaluation?  Evaluation process  Metric definition ViSEvAl  Description  Installation  Configuration  Functionalities

Evaluation process General overview

Metric definition Metric = distance + filter + criteria Distance: associate detected and annotated objects  Spatial: compare bonding boxes area  Temporal: compare time intervals Filter: selects which object to evaluate  Specific type, distance to the camera,... Criteria: how the property of detected and annotated objects is similar?  4 tasks: detection, classification, tracking, event detection

ViSEvAl platform description ViSEvAl: Interfaces All functionalities (synchronisation, display,...) ViSEvAlGUI ViSEvAlEvaluation Distance Object Filter Frame Metric Temporal MetricEvent Metric Loading Video Tool Core library Plugin

ViSEvAl plugins 1/2 Loading video  ASF-Videos, Caviar-Images, JPEG- Images, Kinect-Images (hospital), OpenCV-Videos (Vanhaeim), PNG-Images Distance  Bertozzi, dice coefficient, overlapping Filter  CloseTo, FarFrom, Identity, TypeGroup

ViSEvAl plugins 2/2 Criteria  Detection: M1.X 2 criteria (M1.1: area, M1.2: silhouette)  Classification: M2.X 2 criteria (M2.1: type, M2.2: sub type)  Tracking: M3.X 6 criteria (M3.1: F2F, M3.2: persistence, M3.4 (tracking time), M3.5: confusion, M3.6, M3.7: confusion + tracking time, M3.8: frame detection accuracy)  Event: M4.X 4 criteria (M4.1, M4.2: begin and end time, M4.3: common frame, M4.4: common time)

ViSEvAl: inputs A set of XML files Detection: XML1 file -> sup platform Recognised event: XML3 file -> sup platform Ground truth: xgtf file -> Viper tool Time stamp file for time synchronisation : xml file -> createTimeStampFile.sh script provided by ViSEvAl

ViSEvAl installation Get the sources  sup svn repository  cd sup/evaluation/ViSEvAl/ Run intall.sh at the root of ViSEvAl folder  Dependence: Librairies: QT4 (graphical user interface, plugin management), gl and glu (opengl 3D view), xerces-c (XML read), opencv (video read) Tool: xsdcxx (automatically compute C++ classes for reading XML files) cd bin/appli; setenv LD_LIBRARY_PATH../../lib Run./ViSEvAlGUI chu.conf

ViSEvAl folder organisation src : appli, plugins (Cdistance, CeventMetric, CframeMetric, CloadingVideoInterface, CobjectFilter, CTemporalMetric) include : header files install.sh, clean.sh doc : documentation lib : core library, plugins scripts : createTimeStampFile.sh makeVideoFile.sh splitxml1- 2-3file.sh bin : ViSEvAlGUI, ViSEvAlEvaluation tools : CaviarToViseval, QuasperToViseval xsd : xml schemas

ViSEvAl: configuration file Configuration file based on Keyword-Parameter SequenceLoadMethod "JPEG-Images” #"ASF-Videos“ SequenceLocation "0:../../example/CHU/Scenario_02.vid" TrackingResult "0:../../example/CHU/Scenario_02_Global_XML1.xml" EventResult "../../example/CHU/Scenario_02_Global_XML3.xml" GroundTruth "0:../../example/CHU/gt_ a_mp.xgtf" XMLCamera "0:../../example/CHU/jai4.xml" MetricTemporal "Mono:M3.4:M3.4:DiceCoefficient:0.5:TypeGroup" MetricEvent "M4.2:M4.2.1:Duration:10

ViSEvAl run trace Mon, 11:15>./ViSEvAlGUI Load all the plugins Loading video interfaces: ASF-Videos Caviar-Images JPEG-Images Kinect-Images OpenCV-Videos PNG-Images Loading distance: 3DBertozzi 3DDiceCoefficient 3DOverlapping Bertozzi DiceCoefficient Overlapping Loading object filter: CloseTo FarFrom Identity TypeGroup Loading frame metric: M1.1 M1.2 M2.1 M2.2 M Loading temporal metric: M3.2 M3.4 M3.5 M3.6 M3.7 M Loading event metric: M4.1 M4.2 M4.3 M

ViSEvAl: two tools ViSEvAlGUI  Graphical user interface  Visualise detection and ground truth on the images  User can easily select parameters (e.g. distance, threshold,...)  Frame metrics results are computed in live ViSEvAlEvaluation  Generate a.res file containing the results of the metrics  Frame, temporal and event metrics are computed  User can evaluate several experiments Same configuration file for the both tools

ViSEvAl: result file (.res) camera: 0 Tracking result file: /user/bboulay/home/work/svnwork/sup/evaluation/ViSEvAl/example/vanaheim/res.xml1.xml Fusion result file: Event result file: Ground truth file: /user/bboulay/home/work/svnwork/sup/evaluation/ViSEvAl/example/vanaheim/Tornelli T07_00_01_groups.xgtf Common frames with ground-truth: Detection results: ***** ==================================================== Metric M1.1.1 ==================================================== Frame;Precision;Sensitivity 0;True Positive;False Positive;False Negative 0;Couples 8004; ; ;1;1;0;(100;170; ) 8005; ; ;1;1;0;(100;170; ) 8006; ; ;1;1;0;(100;170; ) 8007; ; ;1;1;0;(100;170; ) ==================================================== Final Results: Global results: Number of True Positives : 1789 Number of False Positives : 1597 Number of False Negatives 0: 2254 Precision (mean by frame) : Sensitivity 0 (mean by frame) : Precision (global) : Sensitivity 0 (global) : Results for GT Object 2 Number of True Positives : 0 Number of False Positives : 0 Number of False Negatives 0: 0 Precision (global) : Sensitivity 0 (global) :