Impact of new ARPEGE physics on RICO case (19-sept-2006) GCSS-GPCI / BLCL-RICO 18-21 sept 2006 P. Marquet, CNRM. Toulouse. Météo-France. + ARPEGE CLIMATE.

Slides:



Advertisements
Similar presentations
© Crown copyright 2006Page 1 CFMIP II sensitivity experiments Mark Webb (Met Office Hadley Centre) Johannes Quaas (MPI) Tomoo Ogura (NIES) With thanks.
Advertisements

© Crown copyright Met Office Towards understanding the mechanisms responsible for different cloud-climate responses in GCMs. Mark Webb, Adrian Lock (Met.
Ewan OConnor, Robin Hogan, Anthony Illingworth Drizzle comparisons.
Anthony Illingworth, + Robin Hogan, Ewan OConnor, U of Reading, UK and the CloudNET team (F, D, NL, S, Su). Reading: 19 Feb 08 – Meeting with Met office.
Robin Hogan Ewan OConnor Damian Wilson Malcolm Brooks Evaluation statistics of cloud fraction and water content.
Hirlam Physics Developments Sander Tijm Hirlam Project leader for physics.
GardeGarde Parameterization and physico-dynamical interface developments for the LAM ALADIN and CSRM AROME Jean-Marcel Piriou, Météo-France. EWGLAM / SRNWP.
Veldhoven, Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity Stephan de Roode (1,2) & Alexander Los (2)
On the use of the GPCI for the tuning and the validation of the new ARPEGE GCM’s physics GCSS-GPCI / BLCL-RICO sept 2006 P. Marquet, CNRM. Toulouse.
Evaluation of HARMONIE using a single column model in the KNMI
1D Dice Experiment at Meteo-France and LES preliminary result E. Bazile, I. Beau, F. Couvreux and P. Le Moigne (CNRM/GAME) DICE Workshop Exeter October.
Evaluating parameterized variables in the Community Atmospheric Model along the GCSS Pacific cross-section during YOTC Cécile Hannay, Dave Williamson,
Clouds and Climate A. Pier Siebesma KNMI What are clouds? How do they form? Cloud climatology Clouds and Radiation Clouds in Climate models Cloud Climate.
Meso-NH model 40 users laboratories
Single Column Model representation of RICO shallow cumulus convection A.Pier Siebesma and Louise Nuijens, KNMI, De Bilt The Netherlands And all the participants.
Simulation of Cloud Droplets in Parameterized Shallow Cumulus During RICO and ICARTT Knut von Salzen 1, Richard Leaitch 2, Nicole Shantz 3, Jonathan Abbatt.
The role of the mean relative humidity on the dynamics of shallow cumuli - LES Sensitivity experiments Stephan de Roode (KNMI/IMAU) Simon Axelsen (IMAU)
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology The Effect of Turbulence on Cloud Microstructure,
IACETH Institute for Atmospheric and Climate Science Boundary Layer parametrisation in the climate model ECHAM5-HAM Colombe Siegenthaler - Le Drian, Peter.
GFS Deep and Shallow Cumulus Convection Schemes
The scheme: A short intro Some relevant case results Why a negative feedback? EDMF-DualM results for the CFMIP-GCSS intercomparison case: Impacts of a.
Operationnal use of high resolution model AROME image source: Sander Tijm, KNMI.
Scientific Advisory Committee Meeting, November 25-26, 2002 Large-Eddy Simulation Andreas Chlond Department Climate Processes.
GardeGarde Designing unified convection parameterizations: two proposals related to equation sets and entrainment. Jean-Marcel Piriou, Météo-France. GCSS.
The representation of stratocumulus with eddy diffusivity closure models Stephan de Roode KNMI.
A Single Column Model version of HIRLAM Javier Calvo.
A dual mass flux framework for boundary layer convection Explicit representation of cloud base coupling mechanisms Roel Neggers, Martin Köhler, Anton Beljaars.
Meso-γ 3D-Var Assimilation of Surface measurements : Impact on short-range high-resolution simulations Geneviève Jaubert, Ludovic Auger, Nathalie Colombon,
Convective Parameterization Options
ARPEGE and LMDz physics on EUROCS cumulus case M-P Lefebvre 1, J-L Dufresne 2, J-Y Grandpeix 2, J-F Guéremy 3, F Hourdin 2, P Marquet 3,C Rio 2 1 Météo-France/IPSL,
Stephan de Roode (KNMI) Entrainment in stratocumulus clouds.
Update on model developments: Meteo-France NWP model / clouds and turbulence CLOUDNET workshop / Paris 27-28/05/2002 Jean-Marcel Piriou Centre National.
Update on model development Meteo-France Meteo-France CLOUDNET workshop - Exeter 5-6/04/2004 François Bouyssel.
Yanjun Jiao and Colin Jones University of Quebec at Montreal September 20, 2006 The Performance of the Canadian Regional Climate Model in the Pacific Ocean.
Experiences with 0-36 h Explicit Convective Forecasting with the WRF-ARW Model Morris Weisman (Wei Wang, Chris Davis) NCAR/MMM WSN05 September 8, 2005.
Météo-France activities Philippe Arbogast, Marie Boisserie (CNRM-GAME, Toulouse) With contributions by I. Beau, H. Douville, F. Bouyssel, CH. Lac, D. Ricard,
The ASTEX Lagrangian model intercomparison case Stephan de Roode and Johan van der Dussen TU Delft, Netherlands.
II: Progress of EDMF, III: comparison/validation of convection schemes I: some other stuff Sander Tijm (HIRLAM) Contributions of: Siebesma, De Rooy, Lenderink,
Kain-Fritsch/Rasch-Kristjanson in Hirlam Javier Calvo With contributions from Karl-Ivar Ivarsson & Colin Jones.
Evaluating forecasts of the evolution of the cloudy boundary layer using radar and lidar observations Andrew Barrett, Robin Hogan and Ewan O’Connor Submitted.
Update on model developments: Meteo-France NWP models Update on model developments: Meteo-France NWP models CLOUDNET Workshop / Paris 4-5 April 2005 Jean-Marcel.
Impact of the Top PBL entrainment on the Shallow Convections : the AMMA and the GEWEX Pacific Cross-section Intercomparisons / GPCI. P. Marquet, Météo-France.
1. Introduction Boundary-layer clouds are parameterized in general circulation model (GCM), but simulated in Multi-scale Modeling Framework (MMF) and.
Objective Evaluation of the Meso-NH Simulations during Hibiscus-Troccinox-Troccibras I.Forecasts for the TROCCINOX campaign II.Three case studies: 13 Feb,
Three real case simulations by Meso-NH validated against satellite observations J.-P. Chaboureau and J.-P. Pinty Laboratoire d’Aérologie, Toulouse 1.Elbe.
Met Office GPCI simulations Adrian Lock. © Crown copyright UK Met Office simulations in GPCI  HadGAM1 climate – for IPCC AR4  38 levels (~300m at 1km),
Sensitivity to the PBL and convective schemes in forecasts with CAM along the Pacific Cross-section Cécile Hannay, Jeff Kiehl, Dave Williamson, Jerry Olson,
Relevant & demanding test for GCMs assess physical parameterizations : radiation, surface exchanges, boundary layer, convective & cloud processes « Even.
New CRM diagnostics dedicated to convective parameterization J-I Yano P. Bechtold, J.-P. Chaboureau, F. Guichard, J.-L. Redelsperger and J.-P. Lafore LMD,
1 Making upgrades to an operational model : An example Jongil Han and Hua-Lu Pan NCEP/EMC GRAPES-WRF Joint Workshop.
LMDZ Single Column Model + what is it ? + why is it interesting ? + List of 1D cases + how to install and run it ? M-P Lefebvre and LMDZ team.
LES Intercomparison Case of Precipitating Shallow Cumulus Margreet van Zanten, Bjorn Stevens, Pier Siebesma, Louise Nuijens A.S. Ackerman, H. Jiang, D.
A dual mass flux scheme for shallow cumulus convection Results for GCSS RICO Roel Neggers, Martin Köhler, Anton Beljaars.
LES modeling of precipitation in Boundary Layer Clouds and parameterisation for General Circulation Model O. Geoffroy J.L. Brenguier CNRM/GMEI/MNPCA.
APR CRM simulations of the development of convection – some sensitivities Jon Petch Richard Forbes Met Office Andy Brown ECMWF October 29 th 2003.
Continuous treatment of convection: from dry thermals to deep precipitating convection J.F. Guérémy CNRM/GMGEC.
A Thermal Plume Model for the Boundary Layer Convection: Representation of Cumulus Clouds C. RIO, F. HOURDIN Laboratoire de Météorologie Dynamique, CNRS,
Development and testing of the moist second-order turbulence-convection model including transport equations for the scalar variances Ekaterina Machulskaya.
Page 1© Crown copyright 2005 DEVELOPMENT OF 1- 4KM RESOLUTION DATA ASSIMILATION FOR NOWCASTING AT THE MET OFFICE Sue Ballard, September 2005 Z. Li, M.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Component testing of the COSMO model’s turbulent diffusion.
© Crown copyright Met Office Deep moist convection as a governor of the West African Monsoon 1 UK Met Office, 2 University of Leeds, 3 National Centre.
MODELING OF SUBGRID-SCALE MIXING IN LARGE-EDDY SIMULATION OF SHALLOW CONVECTION Dorota Jarecka 1 Wojciech W. Grabowski 2 Hanna Pawlowska 1 Sylwester Arabas.
Stephan de Roode The art of modeling stratocumulus clouds.
© Crown copyright Met Office CFMIP-GCSS Intercomparison of SCM/LES (CGILS) Results for the HadGEM2 SCM Mark Webb and Adrian Lock (Met Office) EUCLIPSE/GCSS.
Samuel SOMOT1 and Michel CREPON2
Objectives of the Workshop
Multiscale aspects of cloud-resolving simulations over complex terrain
Arome SCM mini-intercomparison
Entrainment rates in stratocumulus computed from a 1D TKE model
Short Term forecasts along the GCSS Pacific Cross-section: Evaluating new Parameterizations in the Community Atmospheric Model Cécile Hannay, Dave Williamson,
Presentation transcript:

Impact of new ARPEGE physics on RICO case (19-sept-2006) GCSS-GPCI / BLCL-RICO sept 2006 P. Marquet, CNRM. Toulouse. Météo-France. + ARPEGE CLIMATE & N.W.P. team + Meso-Scale CNRM team + ENM (School of Met.) + CERFACS + IPSL-LMD …

Introduction First aim of the study :  Run the French Météo-France (CNRM) ARPEGE-CLIMAT SCM for the new RICO_composite (L80 and L31) …  Send the results for the inter-comparison : done / Pier … + 4 Impact studies :  Test STANDARD versus NEW physics (Turb, Conv,  -Phys) ?  Test of ( L80 /  t = 5 mn ) versus ( L31 /  t = 15 mn ) ?  Impact of the explicit Top PBL entrainment ?  Impact of the (Dry)-thermals ?

The Climate ARPEGE physics : STANDARD / NEW1 / NEW2 STANDARD / V3-V4NEW1 / Mixed NEW2 / IPCC / full-Diagnostic Diag+Prog full-Prognostic TURBDIAG. Mellor-YamadaDIAG. M&YPROGN. / C.B.R.  e /  t = 0  e /  t = 0  e /  t = P + Dif – Dis moist PDF / Bougeaultmoist PDF / moist PDF / Bougeault Bougeault / Bechtold Micro-PhysDIAG. PROGN. PROGN. Smith/KesslerSmith/Kessler Bulk - Lopez q_liq / q_ice q_liq / q_ice q_cloud / q_rain Shallow part in TURB, but why ?Mass-Flux Mass-Flux Convection + Mass-Flux Bougeault ?CAPE / Gueremy CAPE / Gueremy DeepMass-Flux / BougeaultMass-FluxMass-Flux ConvectionConvergence of HUCAPE / Gueremy CAPE / Gueremy Top-PBLNO YES YES EntrainmentGrenier & Breth. Grenier & Breth.

Validation of N_low : GCM (T63-L31) Strato Cu <- STD (DJF+JJA) N_low - ISCCP Strato Cu <- NEW Lopez + CV_GY + TKE-CBR + Ent_PBL

The NEW2 turbulent scheme : TKE-CBR TKE-C.B.R. (2000) + B.L. (1989) for Mixing Length + F2 & 3 / Bougeault (1982) & Bechtold (1995) ; EUROCS : GCM EPCI+GPCI+ACI SCM

Micro-physics : pdf TKE-C.B.R. (2000) + B.L. (1989) + F2 & 3 / Bougeault (1982) & Bechtold (1995) Variance of q_cloud : PDF Sc Cu

An Explicit Top-PBL Entrainment Grenier (ARPEGE) Vertical Diffusion of the Betts variables :  _l and q _t ( A 1 = 0.16 ) ( A 2 = 0.0 )

SCM / EUROCS_ARM_Cu (Lenderink) q_cloud ARP-NEW2 / L19 + Top PBL ent. LES-KNMI ARP-NEW2 / L19 ARP-STD / L19

SCM / EUROCS_ARM_Cu (Lenderink) THETA (L19) ARP-NEW2 + Top PBL ent. LES-KNMI ARP-NEW2 ARP-STD

Ayotte  24SC / L96 Hourdin, Couvreux, Menut, J.A.S., 2002.

And for RICO ? Impact studies :  Test STANDARD versus NEW physics : STD versus NEW2  L80 /  t = 5 mn ; L31 /  t = 15 mn  Impact of the explicit Top PBL entrainment : NEW2_noent  Impact of the (Dry)-thermals : NEW2_noDTh

RICO L80 / THETA_l NEW2_noent NEW2_noDTh STDNEW2 STD instable ; NEW2 better, But with a drift z>2km ? a –0.5 K bias in the PBL ? a very small impact of « entr. » a large impact of Dry Thermals

RICO L31 / THETA_l NEW2_noent NEW2_noDTh STDNEW2 STD noisy ; NEW2 better, with a smaller drift z>2km ! ? a –0.5 K bias in the PBL ? a greater impact of « entr. » and larger impact of Dry Thermals

RICO L80 / Zonal Wind STD NEW2NEW2_noent NEW2_noDTh STD noisy ; NEW2 better, But why these oscillations ? A small impact of « ent » A greater impact of Dry Thermals

RICO L80 / Cloud Cover NEW2_noent NEW2_noDTh STD NEW2 STD very noisy !! NEW2 better, Cloud Base and Maxi OK, Drift of Cloud top theta ? A small impact of « ent » A large impact of Dry Thermals What about the values of C.C. ??

L80 L31 LES KNMI RICO / Cloud Cover Average 24h - 30h STD very noisy up to 3.5 km !! NEW2 better L80 : from 0.5 to 2.5 km : OK ; the good shape L31 : too deep cloud 0.2 to 4 km !! L31 : Large impact of Top PBL entr. ! What about the values of C.C. ??

RICO / Cloud Content Average 24h - 30h L80 L31 LES KNMI SAME as for CLOUD-COVER… Except that values compare to LES… STD very noisy up to 3.5 km !! NEW2 better L80 : from 0.5 to 2.5 km : OK ; the good shape L31 : too deep cloud 0.2 to 4 km !! L31 : Large impact of Top PBL entr. !

L80 LES KNMI RICO / Average 24h - 30h W/m2 K*(m/s) W/m2 L31 NEW2 L80 realistic… except close to the surface !!

NEW2 LH (W/m2)L80 NEW2 L80Cloud Cover NEW2 L80Precip. mm/day NEW2 L80LWP

L80 LES BOMEX RICO / TKE Average 24h - 30h W/m2 m2/s2 W/m2 L31

Conclusions Mainly, questions ! …  Apart from the (internal) validation of the ARPEGE physics…  Why this drift above 2.5 km ? smaller with L31 /  t =15 mn : w ?  Are the oscillations for (u,v) Wind observed by others ?  How to compare Precip & C.C. to LES or Obs. ? => Radiation !  A real interest for this RICO case ! “Composite” -> “Long_Run” ? RICO  GPCI & AMMA-CI (next talk)… Continue EUROCS’ method…  A deep impact of top-PBL/TURB  shallow convection  Small for EUROCS- Cu / large for RICO… Precip ?

RICO L31 / Cloud Cover NEW2_noent NEW2_noDTh STD NEW2 STD very noisy up to 4 km !! NEW2 better, But worse than L31 (clud base ?) A large impact of « ent » And larger impact of Dry Thermals

L80 L31 LES KNMI RICO / Average 24h - 30h W/m2 (g/kg)*(m/s)

L80 LES KNMI RICO / Average 24h - 30h W/m2 K*(m/s) W/m2 L31

RICO SH (W/m2) STDNEW2 STDNEW2 L80 L31 L80

STD NEW2 STDNEW2 RICO LH (W/m2) L80 L31 L80

RICO Cloud Cover STD NEW2 L31 STD NEW2 L80

RICO Precip. STD NEW2 STD NEW2 L31 L80 L31

RICO LWP STD NEW2 L31 STD NEW2 L80