Physical conditions of the shocked regions in collimated outflows of planetary nebulae Angels Riera (UPC)

Slides:



Advertisements
Similar presentations
A detailed 2D spectroscopic study of the Central Region of NGC 5253 Ana Monreal Ibero (1) José Vílchez (1), Jeremy Walsh (2), Casiana Muñoz-Tuñón (3) (1)
Advertisements

School of something FACULTY OF OTHER School of Physics & Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES Massive YSOs and the transition to UCHIIs.
Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
A tribute to Donald E. Osterbrock, 1924–2007 A tribute to Donald E. Osterbrock, 1924–2007 PLANETARY NEBULA IMAGE CATALOGUE.
PROBLEMS IN GASEOUS HYDRODYNAMICS MICHAŁ RÓŻYCZKA NICOLAUS COPERNICUS ASTRONOMICAL CENTER WARSAW, POLAND PLANETARY NEBULAE AS ASTRONOMICAL TOOLS GDAŃSK,
Mrk334: is a connection between nucleus activity and merging of a companion? Smirnova A.A., Moiseev A.V., Afanasiev V.L. Special Astrophysical Observatory.
The Nature and Origin of Molecular Knots in Planetary Nebulae Sarah Eyermann – U. of Missouri Angela Speck – U. of Missouri Margaret Meixner – STScI Peter.
Imaging: clues on the jet/environment interactions Two exemples: 1) HH 110 : “deflection” of the outflow 2) HH 30 : bending of the jet.
Asymmetric Planetary Nebulae IV La Palma, Canary Islands Water Fountains in Pre-Planetary Nebulae Mark Claussen, NRAO June 19, 2007 Hancock, New Hampshire.
Ionized and neutral gas in the starburst galaxy NGC 5253 Australia Telescope National Facility (ATNF, Australia) Galaxies in the Local Volume – Sydney.
Mike Crenshaw (Georgia State University) Steve Kraemer (Catholic University of America) Jack Gabel (University of Colorado) NGC 4151 Mass Outflows from.
Abundances and relation to PN morphological features Antonio Mampaso IAC, Tenerife. Spain.
Proper Motions of large-scale Optical Outflows Fiona McGroarty, N.U.I. Maynooth ASGI, Cork 2006.
Modelling the Broad Line Region Andrea Ruff Rachel Webster University of Melbourne.
ULTRALUMINOUS INFRARED GALAXIES: 2D KINEMATICS AND STAR FORMATION L. COLINA, IEM/CSIC S. ARRIBAS, STSCI & CSIC D. CLEMENTS, IMPERIAL COLLEGE A. MONREAL,
The Narrow-Line Region and Ionization Cone Lei Xu.
Hot Gas in Planetary Nebulae You-Hua Chu Robert A. Gruendl Martín A. Guerrero Univ. of Illinois.
Hen : The Garden Sprinkler Nebula Angels Riera Universitat Politècnica de Catalunya.
Hen 2-90: The Planetary Nebula which looks like a YSO Raghvendra Sahai Jet Propulsion Laboratory, Caltech 1.Discovered by Henize (1967), listed in Perek-Kohoutek.
AMD Absorption Measure Distribution Evidence for Thermal Instability? By Tomer Holczer Cambridge, MA July 2007.
Correlation of PN morphology and nebular parameters Arturo Manchado Instituto de Astrofísica de Canarias.
Multiple, Coeval and Hubble-like bipolar outflows Romano L.M. Corradi Isaac Newton Group of Telescopes La Palma, Spain.
IAU Symp 34 IAU Symposium 34: Planetary Nebulae Tatranska Lomnica, Czechoslovakia August 1967 C.R. O’Dell High Resolution, High S/N Spectroscopy of PNe.
X-ray Emission from PNe Martín A. Guerrero You-Hua Chu Robert A. Gruendl Univ. of Illinois APN III, Mt Rainier, 7/30/03.
On the velocity structure in clumpy planetary nebulae Café de grano o soluble: Micro-estructuras en nebulosas planetarias Wolfgang Steffen Alberto López.
Stellar Winds and Mass Loss Brian Baptista. Summary Observations of mass loss Mass loss parameters for different types of stars Winds colliding with the.
The Impact of Dust on a Stellar Wind-Blown Bubbles Ed Churchwell & John Everett University of Wisconsin Oct , 2008Lowell Observatory Flagstaff, AZ.
+ Criteria for Candidates Altitude > 40°; Apparent Magnitude > 14; Available Distance and Angular Radius; Available Spectra Criteria for Candidates Altitude.
ASTR112 The Galaxy Lecture 8 Prof. John Hearnshaw 12. The interstellar medium (ISM): gas 12.1 Types of IS gas cloud 12.2 H II regions (diffuse gaseous.
The chemical inventory of HH1 Teresa Giannini, Brunella Nisini, Simone Antoniucci, Dario Lorenzetti, Juan Alcala’, Francesca Bacciotti, Sara Bonito, Linda.
The planetary nebula M2-9: Balmer line profiles of the nuclear region Silvia Torres-Peimbert 1 Anabel Arrieta 2 Leonid Georgiev 1 1 Instituto de Astronomía,
Axisymmetrical velocity structure in bipolar PNe Martina Dobrinčić M. Guerrero, A. Manchado, E. Villaver.
10/14/08 Claus Leitherer: UV Spectra of Galaxies 1 Massive Stars in the UV Spectra of Galaxies Claus Leitherer (STScI)
Light and Matter Astronomy 315 Professor Lee Carkner Lecture 6.
New advances in photoionization codes, how and what for? New advances in photoionization codes: Barbara Ercolano, UCL How and What for?
Hee-Won Lee ARCSEC and Dept. of Astronomy Sejong University 2010 August 26.
1 Nature of Light Wave Properties Light is a self- propagating electro- magnetic wave –A time-varying electric field makes a magnetic field –A time-varying.
Department of Physics and Astronomy Rice University From the Omega facility to the Hubble Space Telescope: Experiments and Observations of Supersonic Fluid.
Do YSOs host a wide-angled wind? - NIR imaging spectroscopy of H 2 emission - 3. Spectro-Imaging using Gemini-NIFS Subaru UM, 1/30/2008 Hiro Takami (ASIAA)
Schematic Picture of Region close to protostar From Matt & Pudritz (2005) disk envelope outflow.
Seeing Stars with Radio Eyes Christopher G. De Pree RARE CATS Green Bank, WV June 2002.
Symbiotic or planetary nebulae? Miguel Santander-García Romano L. M. Corradi Antonio Mampaso Asymmetrical Planetary Nebulae IV, Los Cancajos, La Palma,
The Effect of Escaping Galactic Radiation on the Ionization of High-Velocity Clouds Andrew Fox, UW-Madison STScI, 8 th March 2005.
Dusty disks in evolved stars?
Magnetic fields in Planetary and Proto Planetary
Spectroscopy of Planetary Nebulae in Sextans A and Sextans B Laura Magrini (1), Mario Perinotto (1), Pierre Leisy (2, 3), Romano L.M. Corradi (2), Antonio.
3-D study of the expansion of the nebula of the symbiotic Mira He2-147 M. Santander-García 1, R.L.M. Corradi 2,1 & A. Mampaso 1 1 Instituto de Astrofísica.
Warm Absorbers: Are They Disk Outflows? Daniel Proga UNLV.
Light and Matter Astronomy 315 Professor Lee Carkner Lecture 6.
1 The Red Rectangle Nebula excited by excited species Nadine Wehres, Claire Romanzin, Hans Van Winckel, Harold Linnartz, Xander Tielens.
Hydrodynamical Interpretation of Basic Nebular Structures
Radio Galaxies part 4. Apart from the radio the thin accretion disk around the AGN produces optical, UV, X-ray radiation The optical spectrum emitted.
Molecules around AE Aurigae Patrick Boissé, IAP Collaborators oAndersson BG. oGalazutdinov G. oFederman S. oGerin M. oGry C. oHilly-Blant P. oKrelowski.
ANGULAR EXPANSION IN PLANETARY NEBULAE FROM RADIO INTERFEROMETRIC DATA Yolanda Gómez Centro de Radioastronomía y Astrofísica, UNAM México.
Properties of the NLR from Spatially Resolved Spectroscopy Nicola Bennert University of California Riverside Collaborators: Bruno Jungwiert, Stefanie Komossa,
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
Lecture 10: Bubbles and PNe September 26, III. Conduction Layer - Probe the thermal conduction layer High ions produced by thermal collisions O.
The Structures on Sub-Jeans Scales, Fragmentation, and the Chemical Properties in Two Extremely Dense Orion Cores Zhiyuan Ren, Di Li (NAOC) and Nicolas.
Lecture 9: Wind-Blown Bubbles September 21, 2011.
Comet “Anatomy” nucleus (<30km) atmosphere (near sun)
Infrared integral field spectroscopic observations of globules (cometary knots) in the Helix Nebula (NGC 7293) Mikako Matsuura National Astronomical Observatory.
High Resolution Submm Observations of Massive Protostars
4He Abundances: Optical vs Radio Dana S. Balser
Magnifying a hydrogen atom 1012 times. The electron cloud is 4
What Are the Primary Properties of Stars
HST Surveys of the LMC Planetary Nebulae
4He Abundances: Optical vs Radio Dana S. Balser
Planetary Nebula abundances in NGC 5128 with FORS
A magnetically collimated jet from an evolved star
EVN observations of OH maser burst in OH
Presentation transcript:

Physical conditions of the shocked regions in collimated outflows of planetary nebulae Angels Riera (UPC)

OUTLINE Identification: morphology and kinematics. Physical conditions in shocked regions of PNe: NGC 6543, NGC 7009, IC Irradiated shocks: observational properties and numerical simulations.

IDENTIFICATION Small-scale structures which differ from their surroundings in emission line spectra (low- excitation spectra) and velocities. Morphology Pair or string of knots, jet-like structures which appear in opposite symmetrical pairs, or point- symmetrical features.

Kinematics The first high-velocity collimated outflow in a PN was found by Gieseking, Becker & Solf (1985) in NGC 2392, Vexp = 200 km s -1 Jets and “ansae”: NGC 6543 (Miranda & Solf 1992): Vexp = 130 (250) km s -1 Hubble 4 (López, Steffen & Meaburn 1997): Vexp= 200 km s -1 MyCn 18 (O’Connor et al. 2000): V in excess of 500 km s -1 NGC 7009 (Fernández, Monteiro & Schwarz 2004) : proper motion measurements Vexp = 115 km s -1 Reviews: López (2000, 2002), Gonçalves (2004), Corradi (2006).

FLIERs (Fast Low Ionization Emission Region) Balick et al. (1987, 1993, 1994) Morphology of jets or knots (axial symmetry). Sizes = few x cm. Doppler shifts ± 25 – 50 km s -1. BRETs (Bipolar, Rotating, Episodic jeT) (López et al. 1993) Point-symmetric pair or string of knots. LIS (Low Ionization Structures) (Corradi et al. 1996, Gonçalves et al. 2001). Sub-class of jet-like structures (moderate to high expansion velocities). ↓ associated with collimated outflows

Studies of the Physical Conditions of shock-excited features. Balick et al. (1993, 1994), Hajian et al. (1997), Balick et al. (1998), Gonçalves et al. (2003), Perinotto et al. (2004). Spectral properties: high low ionization lines ([O I], [N II], [S II], [O II]). Kinematics: Doppler shifts ± 25 to 50 km s -1 Ionization stratification: decreasing gradient of ionization with distance from the star (HST + WFPC2). Moderate temperatures and densities. Figure from Balick et al. (1998) NGC 6543 Credit: NASA, ESA,HEIC, and the Hubble Heritage Team (STScI/AU RA).

IC 4634: Bow-shaped structures A,A’, B, B’ Guerrero et al. (in preparation) Hα, [N II] and [O III] composite pictures of A, A’.

K 4-47 Figure from Corradi et al. (2000) IC 4634 Guerrero et al. (in preparation)

K 4-47 M 2-48 Figure from Gonçalves et al. (2004) Figure from Vázquez et al. (2000)

PPNe Outflows : what can tell us? F555w blue F502N green F656N yellow-orange F673N orange-red F814W red Figure from Trammell & Goodrich (2002) A. Riera (UPC), P. García-Lario (ESA) & ESA

STIS data of NGC 7662 (Perinotto et al. 2004): FLIERs are denser than the nebular gas (10 4 cm -3 ); Te [N II] from 9800 to k.

NGC 7009 IC 4634 NGC 6543

Δ M1-92, M2-56, OH Trammell. Dinerstein & Goodrich (1993), Sánchez Contreras et al. (2000) □ Hen (STIS + HST, ground spectroscopy) Riera et al. (1995, 2003) * CRL 618 (STIS + HST) (Riera et al. In prep.) □ BS M 2-48, K 4-47 (ground- spect.) López-Martín et al. (2002), Gonçalves et al. (2004). ▲ Δ NGC 7009 (ground-spect.) Balick et al. (1994), Gonçalves et al. (2003). ■ □ IC 4634 (ground-spect.) Guerrero et al. (in prep.) ● ○ NGC 6543 (ground-spect.) Balick et al. (1994)

Δ M1-92, M2-56, OH □ Hen * CRL 618 □ BS M 2-48, K 4-47 ▲ Δ NGC 7009 (WFPC2) (reduced images provided by B. Balick). Balick et al. (1998) ■ □ IC 4634 (WFPC2) Guerrero et al. (in prep.) ● ○ NGC 6543 (WFPC2) (reduced images provided by B. Balick; Balick 2004). Lame, Harrington & Borkowski (1997)

Irradiated shocks: numerical simulations (Raga, Riera & Mellema in prep.) Description  2D, axisymmetric simulations of a high velocity bullet that moves away from the central star through the photoionized, nebular gas. We include the radiation field from the central star that penetrates the recombination region behind the leading bow-shock in the direction from the post-shock to the pre-shock region.  Gasdynamic code (described in Mellema et al. (1997)) using a 3- level binary adaptative grid, that includes radiative, dielectronic and charge exchange recombinations, collisional ionization and photoionization for several species.

Parameters  Clump: n = 10 3 cm -3, T = 10 4 K, r = cm. V = 100 km s -1. Fully (singly) ionized (i.e. H + /H = 1, He + /He = 1).  Ambient gas: n = 10 2 cm -3, T = 10 4 K. Fully (singly) ionized.  Chemical abundances: mean PN abundances (Kingsburgh & Barlow 1994)  Stellar parameters: T * (BB) = K, L * = 5000 L Θ ModelDistance (cm) M13 x M M33 x 10 17

Results M1 M2 M3 Density (cm -3 ) (top panels) and neutral fraction of H (bottom panels) at different integration times.

M2 Fraction of different ions of O for model M2 for an integration time of 200 years.

M1M2M3

Diagnostic diagrams ● ○ Numerical simulations

CONCLUSIONS High spatial spectroscopy of shocked regions in PNe is needed: are FLIERs denser than the surrounding nebular gas?. Numerical simulations of “irradiated shocks” reproduce some of the properties observed in shock-excited regions in PNe, as the decreasing gradient of ionization with distance to the star. We have to explore with larger values of the stellar temperature or/and the velocity of the clump.