MCAO Laser Launch Telescope and Periscope Celine d’Orgeville and Jim Catone.

Slides:



Advertisements
Similar presentations
Data Reduction of Hartmann Test Ou Yang, Hsien Supervisor : Shiang-yu Wang.
Advertisements

SAM LGS-v1, Optics, The Laser Box position on SOAR IR Nasmyth Optical Nasmyth At 67.5Deg from IR Nasmyth Note: Laser umbilical cord of 7m has been.
A Narrow Field Lobster Eye Telescope Dick Willingale – AXRO December 2014 A Narrow Field Lobster Eye Telescope (for SVOM and similar) Dick Willingale Adrian.
SXC meeting SRON, July 19-20, SXC meeting 19-20/07/2007 Alignment Positioning of mirror with respect to detector (internal). Positioning of total.
Optical Astronomy Imaging Chain: Telescopes & CCDs.
March 30, 2000SPIE conference, Munich1 LGS AO photon return simulations and laser requirements for the Gemini LGS AO program Céline d’Orgeville, François.
PACS IIDR 01/02 Mar 2001 Baffle and Straylight1 D. Kampf KAYSER-THREDE.
Sodium monitoring experiment in Chile Céline d’Orgeville.
LBT AO Progress Meeting, Arcetri Walter Seifert (ZAH, LSW) The LBT AO System and LUCIFER 1.Requirements for the commissioning of LUCIFER:
Telescope Tear-Down Anatomy of a 114mm f/8 Newtonian Reflector.
Laser Launch System for the LBT Richard Davies Sebastian Rabien Max Planck Institute for Extraterrestrial Physics  Approaches of other observatories 
FLAO Alignment Procedures G. Brusa, S. Esposito FLAO system external review, Florence, 30/31 March 2009.
Trade Study Report: Fixed vs. Variable LGS Asterism V. Velur Caltech Optical Observatories Pasadena, CA V. Velur Caltech Optical Observatories Pasadena,
Optical Imaging in Astronomy 1st CASSDA School for Observers Observatorio del Teide, 20 – 25 April 2015 Franz Kneer Institut für Astrophysik Göttingen.
NGAO 1-tier Draft Optical Relay Design P. Wizinowich 12/7/07.
Electron Microscope. Light Resolution  The resolution of a microscope is limited by the diffraction of light. Single diffractionSingle diffraction 
LGS WFS Design Status & Issues Dekany, Delacroix, & Velur Caltech Optical Observatories.
Keck Next Generation Adaptive Optics Team Meeting 6 1 Optical Relay and Field Rotation (WBS , ) Brian Bauman April 26, 2007.
PALM-3000 P3K Stimulus Design Update Rick Burruss P3K Team Meeting #7 February 27, 2008.
WFS Preliminary design phase report I V. Velur, J. Bell, A. Moore, C. Neyman Design Meeting (Team meeting #10) Sept 17 th, 2007.
NGAO Alignment Plan See KAON 719 P. Wizinowich. 2 Introduction KAON 719 is intended to define & describe the alignments that will need to be performed.
Wide-field, triple spectrograph with R=5000 for a fast 22 m telescope Roger Angel, Steward Observatory 1 st draft, December 4, 2002 Summary This wide-field,
1 Telescope Optical Performance Breakout Session M.Lampton UCBerkeley Space Sciences Lab 10 July 2002.
NGAO 1-tier Draft Optical Relay Design P. Wizinowich 12/3/07.
7. Optical instruments 1) Cameras
7. Optical instruments 1) Cameras
Optical characteristics of the EUV spectrometer for the normal-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
September 28, 2007LGS for SAM – PDR – Optics1 LGS for SAM Optical Alignment R.Tighe, A.Tokovinin. LGS for SAM Design Review September 2007, La Serena.
8 September Observational Astronomy TELESCOPES, Active and adaptive optics Kitchin pp
SAM PDR1 SAM LGS Mechanical Design A. Montane, A. Tokovinin, H. Ochoa SAM LGS Preliminary Design Review September 2007, La Serena.
Effective lens aperture Deff
1 Kai Wei Institute of Optics and Electronics (IOE),CAS August 30,2010 The TMT Laser Guide Star Facility (LGSF)
Basic Telescope Design Refractors: Utilizes a lens (or lenses) to produce the refraction of light to focus light from an object. The main lens is called.
MCAO Adaptive Optics Module Mechanical Design Eric James.
MCAO Adaptive Optics Module Subsystem Optical Designs R.A.Buchroeder.
Laboratory prototype for the demonstration of sodium laser guide star wavefront sensing on the E-ELT Sexten Primary School July 2015 THE OUTCOME.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
MCAO MCAO for Gemini South Preliminary Design Review May Hilo, Hawaii.
Optical Design of Giant Telescopes for Space Jim Burge, Erin Sabatke Optical Sciences Center Roger Angel, Neville Woolf Steward Observatory University.
September 28, 2007LGS for SAM – PDR – Optics1 LGS for SAM Optical Design R.Tighe, A.Tokovinin. LGS for SAM Design Review September 2007, La Serena.
PACS IIDR 01/02 Mar 2001 FPFPU Alignment1 D. Kampf KAYSER-THREDE.
MCAO System Overview Brent Ellerbroek. MCAO May 24-25, 2001MCAO Preliminary Design Review2 Presentation Outline Primary subsystems and their characteristics.
Chang,Liang YNAO,CAS July 09-10,2011 Fore Parts of Optical Design Scheme of FASOT (from telescope to spectrograph)
AO for ELT – Paris, June 2009 MAORY Multi conjugate Adaptive Optics RelaY for the E-ELT Emiliano Diolaiti (INAF–Osservatorio Astronomico di Bologna)
The AO system for the GTC -an update Nicholas Devaney, Dolores Bello, Bruno Femenía, Alejandro Villegas, Javier Castro Grantecan, Instituto de Astrofísica.
Low order modes sensing for LGS MCAO with a single NGS S. Esposito, P. M. Gori, G. Brusa Osservatorio Astrofisico di Arcetri Italy Conf. AO4ELT June.
AO review meeting, Florence, November FLAO operating Modes Presented by: S. Esposito Osservatorio Astrofisico di Arcetri / INAF.
OC, June 3, SAM – SOAR Adaptive Module Andrei Tokovinin Nicole van der Bliek.
SAM PDR1 S OAR Adaptive Module LGS LGSsystem Andrei Tokovinin SAM LGS Preliminary Design Review September 2007, La Serena.
ZTF Optics Design P. Jelinsky ZTF Technical Meeting 1.
MCAO System Modeling Brent Ellerbroek. MCAO May 24-25, 2001MCAO Preliminary Design Review2 Presentation Outline Modeling objectives and approach Updated.
Eye (Relaxed) Determine the focal length of your eye when looking at an object far away.
Light, Reflection, and Refraction OPTICS. Electromagnetic Waves Magnetic field wave perpendicular to an electric field wave All objects emit EMWs. – 
WFIRST IFU -- Preliminary “existence proof” Qian Gong & Dave Content GSFC optics branch, Code 551.
20 OCT 2003SOLAR ORBITER MEETING1 Optical Design Activities at RAL Kevin Middleton Optical Systems Group Space Science & Technology Dep’t. Rutherford Appleton.
1 MCAO at CfAO meeting M. Le Louarn CfAO - UC Santa Cruz Nov
March 31, 2000SPIE CONFERENCE 4007, MUNICH1 Principles, Performance and Limitations of Multi-conjugate Adaptive Optics F.Rigaut 1, B.Ellerbroek 1 and R.Flicker.
Na Laser Guide Stars for CELT CfAO Workshop on Laser Guide Stars 99/12/07 Rich Dekany.
Prof. Charles A. DiMarzio Northeastern University Fall 2003 July 2003
Wide field telescope using spherical mirrors Jim Burge and Roger Angel University of Arizona Tucson, AZ Jim
On ESO LGS activities Domenico Bonaccini Calia, Yan Feng, Wolfgang Hackenberg, Ronald Holzlöhner, Luke Taylor Laser Guide Star group European Southern.
More Zemax screenshots of the optical setup of the NIKA prototype installed since June 2012 at its final permanent position at the 30m telescope. S. Leclercq,
7. Optical instruments 1) Cameras
Intra-pixel Sensitivity Testing Preliminary Design Review
Observational Astronomy
Optical Design For a 32 Inch, All-Spherical Relay Cassegrain Telescope
7. Optical instruments 1) Cameras
Optics Alan Title, HMI-LMSAL Lead,
The optical layout of future WFCT
Injector Drive Laser Technical Status
Presentation transcript:

MCAO Laser Launch Telescope and Periscope Celine d’Orgeville and Jim Catone

MCAO May 24-25, 2001MCAO Preliminary Design Review2 On-axis, behind secondary mirror Do not obstruct secondary mirror central hole when MCAO not in use  CoDR: deployable primary mirrorLLT  PDR: PERISCOPE

MCAO May 24-25, 2001MCAO Preliminary Design Review3 LLT requirements ParameterSpecification Magnification ratio60 with a 1% tolerance Field of View +/- 1.2 arcmin (unvignetted) +/- 1.0 arcmin (for image quality spec.) Optical design No central obscuration No internal focus ~ 450mm STOP Focus adjustment Fixed afocal telescope (passive comp. preferred) Optical transmission > nm ~ 50 % in the visible ( nm) Optics and coatings Can sustain power densities in the W/cm 2 range

MCAO May 24-25, 2001MCAO Preliminary Design Review4 LLT image quality analysis for MCAO LGS WFS centroiding measurement error must not increase by more than 20% (req.)/ 10% (goal) Low order aberrations LGS spot size increase < 10% (5%) Defocus<0.1 wave rms Astig<0.18 wave rms Coma<0.1 wave rms Trefoil<0.25 wave rms Spherical <0.1 wave rms High order aberrations Decrease in SNR < 10% (5%) High order ab. <0.06 wave rms

MCAO May 24-25, 2001MCAO Preliminary Design Review5 LLT image quality specs for MCAO Wavefront aberrations RequirementGoal Tip/Tilt ( dynamic) < 0.1 Hz Hz 1-30 Hz > 30 Hz (in arcsec on the sky) < 10’’ peak < 1’’ peak < 0.2’’ peak < 0.03’’ rms Low order aberrations < 0.15 wave rms < 0.1 wave rms High order aberrations < 0.06 wave rms < 0.04 wave rms All other performance being equal, this would save a 15% increase in laser power requirement

MCAO May 24-25, 2001MCAO Preliminary Design Review6 LLT optical design 16mm toroidal fold mirror 10mm silica aspheric lens 450mm, f=1672.3mm, 258mm off- axis parabola

MCAO May 24-25, 2001MCAO Preliminary Design Review7 Optical perf. over ±1 arcmin FoV for a uniformly illuminated 450mm STOP

MCAO May 24-25, 2001MCAO Preliminary Design Review8 Optical perf. over ±1 arcmin FoV for a uniformly illuminated 300mm STOP

MCAO May 24-25, 2001MCAO Preliminary Design Review9 Encircled energy over ±1.2 arcmin FoV

MCAO May 24-25, 2001MCAO Preliminary Design Review10 Gemini Telescope’s Top End Assembly Mounting Surface For the LLT Electronics Boxes f/16 Top End Secondary Mirror Module Secondary Support Structure (SSS) Top End Vanes Vane Ring SSS/M2 Interface Plane

MCAO May 24-25, 2001MCAO Preliminary Design Review11 Gemini Telescope’s Secondary Support Structure 3D View of the SSS Reference Plane ± Figures taken from drawings ICR01 and ICR02

MCAO May 24-25, 2001MCAO Preliminary Design Review12 SSS/LLT/BTOOB Alignment First align the BTOOB to the LLT and pin Remove the BTOOB and loosely install the LLT in the SSS Reinstall the BTOOB on the LLT Align the BTOOB/LLT assembly with the SSS Remove the BTOOB and pin the LLT/SSS interface Finally, reinstall the BTOOB Secondary Support Structure Laser Launch Telescope Beam Transfer Optics Optical Bench

MCAO May 24-25, 2001MCAO Preliminary Design Review13 4X LLT/SSS Interface Pad LLT Top Plate Interfaces 3X LLT/BTOOB Interface Pad F F X LLT/SSS Location Pin Access Port +X-X +Y -Y 2X LLT/BTOOB Alignment Pin Location PLAN VIEW

MCAO May 24-25, 2001MCAO Preliminary Design Review14 LLT Interface Details LLT/SSS AlignmentLLT/BTOOB Alignment SSS Top Plate M20 Nut & Washer ½” Locating Pin 1.0 mm Raised Pad 5.0 mm Thick Shim BTO Optical Bench LLT Top Plate w/ M20 Stud LLT Pilot Hole Access Port 1.0 mm Raised Pads ¼” Locating Pin M12 Bolt & Washer M12 Threaded Insert

MCAO May 24-25, 2001MCAO Preliminary Design Review15 Passive Focus Compensation Configuration Off-Axis Distance DETAIL 1 1 Fold Mirror Diverging Lens Incoming Beam Translation Table Compensation Rod Theoretical Mirror Mounting Plane Exiting Beam Produces a maximum error of 2.5 nm in the temperature range of 0 ± 15°

MCAO May 24-25, 2001MCAO Preliminary Design Review16 Passive Compensation Analysis r = b = Compensation Rod Length b c B A a C CONSTANTS b = mm B = 81.2° c = mm

MCAO May 24-25, 2001MCAO Preliminary Design Review17Periscope Why ? –168mm M2 hole to avoid narcissus effect when observing in thermal IR –M2 hole blocked by LLT, IR instrument can no longer see sky How ? –Two-mirror periscope to divert the beam around the SSS –Mirror cover to block beam during visible observations –Oversized FoV and STOP to allow for M2 tip/tilt and decentrations and telescope flexures Where ? –Bottom of SSS –Replace Gemini central baffle Who ? –Gemini designs, integrates and commissions –RFP for parts for GN and GS periscopes

MCAO May 24-25, 2001MCAO Preliminary Design Review18 Periscope Optical Design 180mm Hole in M2 (Actual Hole is 168 mm) Focus Target at Height of BTOOB/LLT Assembly PM2 Parent Mirror PM1 Parent Mirror 8M Telescope Axis  = 10°±1° 3.5° to 4.5° Exclusion Angle on the Sky

MCAO May 24-25, 2001MCAO Preliminary Design Review19 Secondary Mirror Bracket Mirror Cover Assembly Primary Mirror Bracket Primary Mirror Secondary Mirror Periscope Subsystem

MCAO May 24-25, 2001MCAO Preliminary Design Review20 Periscope Location (SSS) SSS Cross Bracing Periscope Assembly SSS Top End Vane Interface

MCAO May 24-25, 2001MCAO Preliminary Design Review21 Periscope Clearance Within the SSS SSS Cross Bracing Periscope Assembly Secondary Mirror Bracket SSS Vertical Beams

MCAO May 24-25, 2001MCAO Preliminary Design Review22 Periscope Location (M2) f/16 Secondary Mirror (M2) M2 Positioning Mechanism M2 Tilt Mechanism Beam Path Periscope Assembly LLT 168 mm Optical Stop SSS M2 Mounting Plate

MCAO May 24-25, 2001MCAO Preliminary Design Review23 Periscope Orientation +X-X +Y -Y SSS Surface w/ Vertical I-Beams Existing M2 Hole Cover Assembly Outline Periscope Assembly F F Primary/Secondary Bracket Interface

MCAO May 24-25, 2001MCAO Preliminary Design Review24 Periscope Mirror Mounting 115° Offset Spherical Mount Secondary Bracket Flange Primary Mirror Primary Mirror Bracket Axis of Symmetry

MCAO May 24-25, 2001MCAO Preliminary Design Review25 Periscope Mirror Mounting Details Mirror Mount w/ M6 Stud M6 Nut and Large OD Washer Spherical Seat Primary Mirror Surface Spherical Washer

MCAO May 24-25, 2001MCAO Preliminary Design Review26 Periscope Mirror Cover Secondary Mirror Mirror Cover Motor Bracket Mirror Cover Motor Aluminum Hinge Mirror Cover 2-Bar Linkage Secondary Mirror Bracket

MCAO May 24-25, 2001MCAO Preliminary Design Review27 Periscope Mirror Cover Open & Closed Positions Outgoing Beam Mirror Cover Motor Bracket 2-Bar Linkage Mirror Cover (Open) Secondary Mirror Bracket Secondary Mirror Incoming Beam 98.3° Limit Switches

MCAO May 24-25, 2001MCAO Preliminary Design Review28 Mass Allocation Total Mass Added to the SSS 125 ±25 kg BTOOB Mass 20 kg LLT Mass 120 kg Periscope Mass 10 kg

MCAO May 24-25, 2001MCAO Preliminary Design Review29 PDR Agenda PDR Agenda Thursday, 5/ Welcome 0805 Project overview 0830 Science case 0930 Break 0945 System overview 1015 System modeling 1100 AO Module optics 1145 Lunch 1245 AO Module mechanics 1340 AO Module electronics 1400 Break 1415 Beam Transfer Optics 1510 Laser Launch Telescope 1545 Closed committee session 1800 Adjourn