Alice Chuang April 28, 2011 En 250.  Osteoarthritis increasing in aging population  Imaging techniques:  Radiography (X-ray) – golden standard, qualitative.

Slides:



Advertisements
Similar presentations
1.Lesion location 2.Lesion size 3.Status of the Physis – Physeal Patency 4.Characteristics of Parent Bone a)Sclerosis 5.Characteristics of Progeny Bone.
Advertisements

Musculoskeletal Imaging Musculoskeletal diseases debilitate millions of people and are tremendous burden on health care systems worldwide. It was estimated.
Road-Sign Detection and Recognition Based on Support Vector Machines Saturnino, Sergio et al. Yunjia Man ECG 782 Dr. Brendan.
HOW DO WE DIAGNOSE LAMENESS IN YOUR HORSE ?
Alice Chuang April 12, 2011 En 250.  Osteoarthritis increasing in aging population  Imaging techniques:  Radiography (X-ray)  MRI  Spectroscopy 
Knee.
Alice Chuang April 28, 2011 En 250.  Osteoarthritis increasing in aging population  Imaging techniques:  Radiography (X-ray) – golden standard, qualitative.
A fully automated method for segmentation and thickness determination of hip joint cartilage from 3D MR data Authors: Yoshinobu Sato,et al. Source: Proceedings.
Combining the strengths of UMIST and The Victoria University of Manchester Tom Williams, Chris Taylor Andrew Holmes, John Waterton, Rose Maciewicz Graham.
by Donald G. Eckhoff, Thomas F. Dwyer, Joel M. Bach, Victor M
Focal Analysis of Knee Articular Cartilage Quantity and Quality Dr. Tomos G. Williams Imaging Science and Biomedical Engineering University of Manchester.
Author :J. Carballido-Gamio J.S. Bauer Keh-YangLeeJ. Carballido-GamioJ.S. BauerKeh-YangLee S. Krause S. MajumdarS. KrauseS. Majumdar Source : 27th Annual.
Anatomical alignment, but not goniometry, predicts femorotibial cartilage loss as well as mechanical alignment: data from the Osteoarthritis Initiative 
Imaging in Osteoarthritis
HOW DO WE DIAGNOSE LAMENESS IN YOUR HORSE ?
In vivo patellofemoral contact mechanics during active extension using a novel dynamic MRI-based methodology  B.S. Borotikar, F.T. Sheehan  Osteoarthritis.
Subregional laminar cartilage MR spin–spin relaxation times (T2) in osteoarthritic knees with and without medial femorotibial cartilage loss – data from.
Systemic biochemical markers of joint metabolism and inflammation in relation to radiographic parameters and pain of the knee: data from CHECK, a cohort.
Automated segmentation and analysis of normal and osteoarthritic knee menisci from magnetic resonance images – data from the Osteoarthritis Initiative 
Imaging following acute knee trauma
Changes in the T2 relaxation value of the tibiofemoral articular cartilage about 6 months after anterior cruciate ligament reconstruction using the double-bundle.
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
Anatomical distribution of areas of preserved cartilage in advanced femorotibial osteoarthritis using CT arthrography (Part 1)  P. Omoumi, N. Michoux,
Reliability of an efficient MRI-based method for estimation of knee cartilage volume using surface registration  J.L. Jaremko, M.D., Ph.D., R.W.T. Cheng,
Intraoperative validation of quantitative T2 mapping in patients with articular cartilage lesions of the knee  S.T. Soellner, A. Goldmann, D. Muelheims,
Non-invasive in vivo quantification of the medial tibial cartilage thickness progression in an osteoarthritis rabbit model with quantitative 3D high resolution.
Relationships between tibial rim alignment and joint space width measurement reproducibility in non-fluoroscopic radiographs of osteoarthritic knees 
Severity mapping of the proximal femur: a new method for assessing hip osteoarthritis with computed tomography  T.D. Turmezei, D.J. Lomas, M.A. Hopper,
H. Oka, M. D. , S. Muraki, M. D. , Ph. D. , T. Akune, M. D. , Ph. D
Cartilage damage pattern in relation to subchondral plate thickness in a collagenase- induced model of osteoarthritis  S.M. Botter, M.Sc., G.J.V.M. van.
Knee joint subchondral bone structure alterations in active athletes: a cross-sectional case–control study  F.W. Roemer, M. Jarraya, J. Niu, J. Duryea,
Assessment of the radioanatomic positioning of the osteoarthritic knee in serial radiographs: comparison of three acquisition techniques  M.-P. H. Le.
Measurement accuracy of focal cartilage defects from MRI and correlation of MRI graded lesions with histology: a preliminary study  Chris A McGibbon,
Sensitivity to Change of 3D Meniscal Measures in Rapidly Progressing Knee Osteoarthritis and Association With Radiographic Joint Space Width Loss  M.
Differences between X-ray and MRI-determined knee cartilage thickness in weight- bearing and non-weight-bearing conditions  M. Marsh, R.B. Souza, B.T.
Presence, location, type and size of denuded areas of subchondral bone in the knee as a function of radiographic stage of OA – data from the OA initiative 
Effects of ACL interference screws on articular cartilage volume and thickness measurements with 1.5 T and 3 T MRI  M.E. Bowers, B.S., G.A. Tung, M.D.,
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
F. Eckstein, A. Guermazi, G. Gold, J. Duryea, M. -P
Potential mechanism of alendronate inhibition of osteophyte formation in the rat model of post-traumatic osteoarthritis: evaluation of elemental strontium.
Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-μCT  L. Xie, A.S.P. Lin, R.E. Guldberg,
B. C. Fleming, H. L. Oksendahl, W. A. Mehan, R. Portnoy, P. D
Association of occupational activity with joint space narrowing and osteophytosis in the medial compartment of the knee: the ROAD study (OAC5914R2)  S.
Association of radiographic and symptomatic knee osteoarthritis with health-related quality of life in a population-based cohort study in Japan: the ROAD.
Joint distraction attenuates osteoarthritis by reducing secondary inflammation, cartilage degeneration and subchondral bone aberrant change  Y. Chen,
D. J. Hunter, D. P. Beavers, F. Eckstein, A. Guermazi, R. F. Loeser, B
A. K. O. Wong, D. Inglis, K. A. Beattie, A. Doan, G. Ioannidis, J
Quantification of differences in bone texture from plain radiographs in knees with and without osteoarthritis  J. Hirvasniemi, J. Thevenot, V. Immonen,
Baseline and longitudinal change in isometric muscle strength prior to radiographic progression in osteoarthritic and pre-osteoarthritic knees – data.
Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density (sBMD) using computed tomography (CT): comparison.
Christopher Buckland-Wright, D.Sc  Osteoarthritis and Cartilage 
Development of quantitative in vivo imaging of articular cartilage degradation in murine osteoarthritis  P. Das Neves Borges, M.M. Fowkes, P.E. Brennan,
Pre-radiographic osteoarthritic changes are highly prevalent in the medial patella and medial posterior femur in older persons: Framingham OA study  D.
Anatomical alignment, but not goniometry, predicts femorotibial cartilage loss as well as mechanical alignment: data from the Osteoarthritis Initiative 
S. Muraki, T. Akune, Y. En-yo, M. Yoshida, T. Suzuki, H. Yoshida, H
Joint loading and proximal tibia subchondral trabecular bone microarchitecture differ with walking gait patterns in end-stage knee osteoarthritis  B.C.
G. Neumann, D. Hunter, M. Nevitt, L. B. Chibnik, K. Kwoh, H. Chen, T
MRI-derived T2 relaxation times and cartilage morphometry of the tibio-femoral joint in subjects with and without osteoarthritis during a 1-year follow-up 
Templates of the cartilage layers of the patellofemoral joint and their use in the assessment of osteoarthritic cartilage damage  Z.A Cohen, Ph.D., V.C.
Defining the load bearing axis of the lower extremity obtained from anterior-posterior digital radiographs of the whole limb in stance  Y. Iseki, T. Takahashi,
X. Li, Ph. D. , C. Benjamin Ma, M. D. , T. M. Link, M. D. , D. -D
Quantitative 3D MR evaluation of autologous chondrocyte implantation in the knee: feasibility and initial results  C. Glaser, M.D., B.J. Tins, M.D., F.R.C.R.,
M. S. Swanson, J. W. Prescott, T. M. Best, K. Powell, R. D. Jackson, F
Computed tomography topographic mapping of subchondral density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary.
Prevalence of radiographic knee osteoarthritis and its association with knee pain in the elderly of Japanese population-based cohorts: The ROAD study 
B. C. Fleming, H. L. Oksendahl, W. A. Mehan, R. Portnoy, P. D
T.D.V. Cooke, M.A., M.B., B.Chir., F.R.C.S. (c) 
M. E. Bowers, B. S. , N. Trinh, M. S. , G. A. Tung, M. D. , F. A. C. R
Fig. 3. Follow-up right knee MRI of the patient at 7 weeks after the operation. (a) Coronal proton density weighted image displays hypertrophic regeneration.
Presentation transcript:

Alice Chuang April 28, 2011 En 250

 Osteoarthritis increasing in aging population  Imaging techniques:  Radiography (X-ray) – golden standard, qualitative  MRI - quantitative, gaining popularity  Spectroscopy  Ultrasound  Difficult to quantify progress  Joint space width – thickness of articular cartilage  Osteophyte formation – bony protrusion  Kellegren-Lawrence scale for severity of disease

 Fully automatic quantification of knee osteoarthritis severity on plain radiographs. Oka H, Muraki S, et al. Osteoarthritis Cartilage Nov;16(11):  KOACAD – Knee osteoarthritis computer- aided diagnosis  Thresholds normalized to Kellegren-Lawrence scale based on cohort of 2975 Japanese adults

A) BoundariesC) Osteophyte area B) Joint space width, areaD) Femorotibial angle

A) Original image B) Filtered image C) Region of interest Vertical neighborhood difference filter D) Upper rim = femoral condyle Vertical filtering with 3x3 square neighborhood difference filter

E)Lower rim = Margins of tibial plateau Anterior and posterior margins averaged F)Straight regression line drawn of lower rim G)Joint space area: inside rim, outside rim Inner: Intersection of regression line, lower rim H) Minimum joint space width Minimum vertical space distance

I) Protrusion Femur, tibia outlined by 3x3 square horizontal neighborhood difference filter J) Osteophyte area = protrusion (inflection point) K)Middle lines from outline of femur, tibia L)Femorotibial angle: axes of femur, tibia Straight-line regression of middle lines

 Create a Matlab program mimicking KOACAD  Quantify disease state of osteoarthritis  Use 2D radiographs  Successes  mJSW – minimum joint space width  JSA – joint space area  FTA – femorotibial angle  Future  Osteophyte area – protrusions near joint  Automation  Filter images

 Simple cartoon images to test Matlab program  Top image, results in pixels  Left  JSA (joint space area) = 24  min JSW (joint space width) = 1  Right  JSA = 27  min JSW = 1  Bottom, result in degrees  FTA (femorotibial angle) = 178.2

 Top, joint space in pixels  Left  JSA = 462  min JSW = 6  Right  JSA = 154  min JSW = 7  Bottom, angle in degrees  FTA =  Test images show that Matlab program works on idealized images

 Vertical difference filter  User control  Threshold as percent of intensity  Upper: femoral condyle  Lower: tibial plateau  Linear regression  Inner: intersection of regression line and tibia  Outer: lateral joint border

 Joint space width (JSW)  Vertical distance in pixels  Minimum JSW  Left: mJSW = 7  Right: mJSW = 7  Joint space area (JSA)  Number of pixels  Sum of all JSW  Left: JSA = 682  Right: JSA = 1076  Can normalize pixel values

 Successes  Upper, lower, inner, and outer bounds identified  More shading on lateral sides of joint  Adjusting threshold for vertical neighbor difference  Summing algorithm for Joint Space characterization  Difficulties  Slanted alignment of images  Background noise unfiltered  Dimensions vary  Manual zooming-in is labor intensive

Left JSA = 240 mJSW = 11 Right JSA = 1377 mJSW = 11 Left JSA = 371 mJSW = 5 Right JSA = 808 mJSW = 5 Left JSA = mJSW = 62 Right JSA = 4869 mJSW = 60 Left JSA = mJSW = 13 Right JSA = 6746 mJSW = 26

 Top, results in pixels  Left  JSA = 462  min JSW = 6  Right  JSA = 154  min JSW = 7  Bottom, result in degrees  FTA (femorotibial angle) = 173.7

 Horizontal difference filter  User control  Intensity threshold  Medial regression lines  Femur – blue  Tibia – green

 Regression lines  Slope m  m1 – Femur, blue  m2 – Tibia, green  tan(FTA) = (m1 – m2) (1 + m1*m2)  FTA = degrees  Same limitations as JSA  Intensity distribution  Highly variable

FTA = FTA = 176.4

FTA = FTA = 155.8

 Example of normal knee  Joint space evaluation  Left  JSA (joint space area) = 371  min JSW (joint space width) = 5  Right  JSA = 808  min JSW = 5  Femorotibial angle  FTA = degrees

 Osteoarthritic knee  Right joint space undetectable  Joint space evaluation  Left  JSA (joint space area) = 884  min JSW (joint space width) = 7  Right  JSA = 19  min JSW = 7  Femorotibial angle  FTA = degrees

 Numerical comparison of 2D x-rays  Osteoarthritic mJSW and JSA pixel values  FTA – angle of joint bones possible sign of osteoarthritis  Future improvements  Osteophyte area, as done in KOACAD  Image quality  Intensity distribution  Background signals  Automation  Filtering  Threshold detection  Atlas mapping  Compare with 3D imaging

Primary source:  Oka H, Muraki S, Akune T, Mabuchi A, Suzuki T, Yoshida H, Yamamoto S, Nakamura K, Yoshimura N, Kawaguchi H. Fully automatic quantification of knee osteoarthritis severity on plain radiographs. Osteoarthritis Cartilage Nov;16(11): Epub 2008 Apr 18. Additional sources:  Oka H, Muraki S, Akune T, Nakamura K, Kawaguchi H, Yoshimura N. Normal and threshold values of radiographic parameters for knee osteoarthritis using a computer-assisted measuring system (KOACAD): the ROAD study. J Orthop Sci Nov;15(6): Epub 2010 Nov 30.  Cooke TD. Re: "Fully automatic quantification of knee osteoarthritis severity on plain radiographs". Authors: H. OKA et al. Osteoarthritis and Cartilage (2008) 16, Osteoarthritis Cartilage Sep;17(9):1252-3; author reply Epub 2009 Mar 28.  Johansson A, Sundqvist T, Kuiper JH, Öberg PÅ. A spectroscopic approach to imaging and quantification of cartilage lesions in human knee joints. Phys Med Biol Mar 21;56(6): Epub 2011 Mar 1.  Dodin P, Pelletier JP, Martel-Pelletier J, Abram F. Automatic Human Knee Cartilage Segmentation from 3D Magnetic Resonance Images. IEEE Trans Biomed Eng Jul 15. [Epub ahead of print]  Bowers ME, Trinh N, Tung GA, Crisco JJ, Kimia BB, Fleming BC. Quantitative MR imaging using "LiveWire" to measure tibiofemoral articular cartilage thickness. Osteoarthritis Cartilage Oct;16(10): Epub 2008 Apr 14.

Primary image source:  Dr. Braden Fleming, Coro Research Center Additional osteoarthritic knee x-rays:   Ray.jpg Ray.jpg   us_bilateral_patellectomy_using_bone_cuts/tkr-fig1.jpg us_bilateral_patellectomy_using_bone_cuts/tkr-fig1.jpg  us_bilateral_patellectomy_using_bone_cuts/tkr-fig1.jpg us_bilateral_patellectomy_using_bone_cuts/tkr-fig1.jpg   Rays_of_Normal_and_Degenerative_Knees-SPL.jpg?id= Rays_of_Normal_and_Degenerative_Knees-SPL.jpg?id=  Additional normal knee x-rays:     Rays_of_Normal_and_Degenerative_Knees-SPL.jpg?id= Rays_of_Normal_and_Degenerative_Knees-SPL.jpg?id=   xray.jpg xray.jpg  