1 Proton detection with the R3B calorimeter, two layer solution IEM-CSIC sept. 2006 report MINISTERIO DE EDUCACIÓN Y CIENCIA CONSEJO SUPERIOR DE INVESTIGACIONES.

Slides:



Advertisements
Similar presentations
Compton Photon Calorimeter Gregg Franklin, B. Quinn Carnegie Mellon Design Considerations Light Yield and Photoelectrons Detector Geometry, EGS Simulations,
Advertisements

Silicon detectors in HEP
NUCP 2371 Radiation Measurements II
REVIEW OF CRYSTAL CALORIMETERS V.B.Golubev, Budker Institute of Nuclear Physics, Novosibirsk, Russia.
Study of Position Sensitive  E-E for Space Particle Telescope Pre-results of Geant4 simulation 张云龙,王文骁,李翠.
Gamma-Ray Spectra _ + The photomultiplier records the (UV) light emitted during electronic recombination in the scintillator. Therefore, the spectrum collected.
1 Continuous Scintillator Slab with Microchannel Plate PMT for PET Heejong Kim 1, Chien-Min Kao 1, Chin-Tu Chen 1, Jean-Francois Genat 2, Fukun Tang 2,
DREAM Collaboration: Recent Results on Dual Readout Calorimetry. F.Lacava for the DREAM Collaboration Cagliari – Cosenza – Iowa State – Pavia – Pisa –
Scintillators. When radiation interacts with certain types of materials, it produces flashes of light (scintillation) Materials that respond this way.
Particle interactions and detectors
W. Clarida, HCAL Meeting, Fermilab Oct. 06 Quartz Plate Calorimeter Prototype Geant4 Simulation Progress W. Clarida The University of Iowa.
Scint. Al Internal reflection External reflection ↑ ↑ ↑ Decay Detector Development for Giant Resonance Studies By: Gus Olson Mentor: Dr. D.H.Youngblood.
Geant4 simulations for the calorimeter prototypes D. Di Julio, J. Cederkäll, P. Golubev, B. Jakobsson Lund University, Lund, Sweden.
Geant4 simulations for the calorimeter prototypes D. Di Julio, J. Cederkäll, P. Golubev, B. Jakobsson Lund University, Lund, Sweden.
Tests of scintillators CsI, CsI(Na), BGO, NaI(Tl) CsI(Tl)
ipno.in2p3.fr Milano - October 2006IPNO-RDD-Jean Peyré1 Measurements of CsI(Tl) Crystals with PMT and APD Jean Peyré Milano - Oct 2006.
Lesson 17 Detectors. Introduction When radiation interacts with matter, result is the production of energetic electrons. (Neutrons lead to secondary processes.
Detectors. Measuring Ions  A beam of charged particles will ionize gas. Particle energy E Chamber area A  An applied field will cause ions and electrons.
Crystals and related topics J. Gerl, GSI NUSTAR Calorimeter Working Group Meeting June 17, 2005 Valencia.
Especially concerning optimization of identification power, energy resolution, efficiency, optimal readout device for the barrel part of CALIFA, a calorimeter.
1 Hadronic In-Situ Calibration of the ATLAS Detector N. Davidson The University of Melbourne.
Grupo de Física Nuclear Experimental G F E N CSIC I M E Towards a Frontcap design M. Turrión 1, O. Tengblad 1, A. Perea 1, B. El Bakkari 2 1 IEM-CSIC,
Scintillators.
Alternatives to CsI(Tl) O. Tengblad/T. Nilsson Phoswich solutions GEANT-4 simulations Read-out electronics Multiplexing Swedish plans (Chalmers/KTH)
Lecture 2-Building a Detector George K. Parks Space Sciences Laboratory UC Berkeley, Berkeley, CA.
1 EMCal design MICE collaboration meeting Fermilab Rikard Sandström.
1 Scintillation light yield of Ce-doped LuAP and LuYAP pixel crystals A.J. Wojtowicz 1), W. Drozdowski 1), M. Ptaszyk 1) Z. Galazka 2), J.L. Lefaucheur.
Neutron Generation and Detection Lee Robertson Instrument & Source Division Oak Ridge National Laboratory 17 th National School on Neutron and X-ray Scattering.
1 Tianchi Zhao University of Washington Concept of an Active Absorber Calorimeter A Summary of LCRD 2006 Proposal A Calorimeter Based on Scintillator and.
Study of HF pmt high tail signal FNAL: Jim F, Rick Vidal Iowa: Ugur Akgun, Asli Albayrak, Warren Clarida, Antony Moeller, Yasar Onel, Justin Parsons, Taylan.
RAD2012, Nis, Serbia Positron Detector for radiochemistry on chip applications R. Duane, N. Vasović, P. LeCoz, N. Pavlov 1, C. Jackson 1,
Photon detection Visible or near-visible wavelengths
Heavy Scitillating Crystals and Glasses for a Combined EM and HCal at ILC Tianchi Zhao University of Washigton Sept. 25, 2007.
Heavy Scintillating Glasses for Future High Energy Particle Physics Experiments Chun Jiang School of Electronic Information and Electrical Engineering.
INSTR-08, BINP, Novosibirsk 1 Belle calorimeter upgrade B.Shwartz, Budker Institute of Nuclear Physics Novosibirsk on behalf of BELLE calorimeter.
Gamma calorimeter for R3B: first simulation results INDEX ● The calGamma Geant4 simulation ( a short introduction ) ● Crystal and geometry selection: –
R 3 B Gamma Calorimeter Agenda. ● Introduction ● Short presentation on the first ● Task definition for R&D period ( )
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Development of A Scintillation Simulation for Carleton EXO Project Rick Ueno Under supervision of Dr. Kevin Graham.
Implementing a dual readout calorimeter in SLIC and testing Geant4 Physics Hans Wenzel Fermilab Friday, 2 nd October 2009 ALCPG 2009.
Heavy Scintillating Crystal Fibers for calorimetry
T. Sugitate / Hiroshima / PHX031 / Nov.01 The Photon Spectrometer for RHIC and beyond PbWO 4 Crystal Density 8.29 g/cm 3 Radiation length 0.89 cm Moliere.
work for PID in Novosibirsk E.A.Kravchenko Budker INP, Novosibirsk.
1 Calorimeter in G4MICE Berkeley 10 Feb 2005 Rikard Sandström Geneva University.
Scintillation Detectors
16-Nov-2002Konstantin Beloous1 Digital Hadron Calorimeter Energy Resolution.
Increase in Photon Collection from a YAP:Ce Matrix Coupled to Wave Lenght Shifting Fibres N. Belcari a, A. Del Guerra a, A. Vaiano a, C. Damiani b, G.
BES-III Workshop Oct.2001,Beijing The BESIII Luminosity Monitor High Energy Physics Group Dept. of Modern Physics,USTC P.O.Box 4 Hefei,
CaTS and Dual Readout. CaTS – Calorimeter and Tracker Simulation Describe detector in gdml file (xml like) Define.
MCP-PET: Geant4 Simulation Geometry Implementations 1. Similar to the last report (polished surface). Scintillator : LSO, LaBr3 # of layers : 5 -> 4 Area.
1 Nuclear Medicine SPECT and PET. 2 a good book! SR Cherry, JA Sorenson, ME Phelps Physics in Nuclear Medicine Saunders, 2012.
Radia Sia Syracuse Univ. 1 RICH 2004 Outline:  The CLEO-III RICH Detector  Physics Requirements  CLEO-III RICH at work… Performance of the CLEO-III.
1 Plannar Active Absorber Calorimeter Adam Para, Niki Saoulidou, Hans Wenzel, Shin-Shan Yu Fermialb Tianchi Zhao University of Washington ACFA Meeting.
Fluroscopy and II’s. Fluroscopy Taking real time x-ray images Requires very sensitive detector to limit the radiation needed Image Intensifier (II) is.
Gamma Detector of Plastic Scintillator Oct. 2, 2009 IP-BSM Group 1.
Gamma-ray Large Area Space Telescope -France -Germany -Italy -Japan -Sweden -USA Energy Range 10 keV-300 GeV. GLAST : - An imaging gamma-ray telescope.
Simulation studies of total absorption calorimeter Development of heavy crystals for scintillation and cherenkov readout Dual readout in the 4 th concept.
Tracker Neutron Detector: INFN plans CLAS12 Central Detector Meeting - Saclay 2-3 December 2009 Patrizia Rossi for the INFN groups: Genova, Laboratori.
Hybrid Detector(s) for Complete Gamma Ray Spectroscopy S. S. Bhattacharjee, R Raut, S S Ghugre, A K Sinha UGC-DAE Consortium For Scientific Research, Kolkata.
26th September 2014 Guillermo Ribeiro 1 G. Ribeiro, E. Nácher, A. Perea, J. Sánchez del Río, O. Tengblad Instituto de Estructura de la Materia – CSIC,
Gamma Spectrometry beyond Chateau Crystal J. Gerl, GSI SPIRAL 2 workshop October 5, 2005 Ideas and suggestions for a calorimeter with spectroscopy capability.
COMPASS calorimeters S. Platchkov IRFU, CEA-Saclay GDR, 8-9 avril 2008
Performance of scintillation pixel detectors with MPPC read-out and digital signal processing Mihael Makek with D. Bosnar, V. Gačić, L. Pavelić, P. Šenjug.
Ultra fast SF57 based SAC M. Raggi Sapienza Università di Roma
The Lund R3B prototype: In-beam proton tests and simulations
LaBr3 Ball at HIE-ISOLDE
Neutron Detection with MoNA LISA
When this happens... We see this... 12/6/2018 Steve Wotton.
Basic Physics Processes in a Sodium Iodide (NaI) Calorimeter
Detecting dark matter through line emission
Presentation transcript:

1 Proton detection with the R3B calorimeter, two layer solution IEM-CSIC sept report MINISTERIO DE EDUCACIÓN Y CIENCIA CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS O. Tengblad, M. Turrión Nieves, C. Pascual Izarra, A. Maira Vidal

Olof Tengblad R3B colaboration: Milano Oct outline  Why a two layer solution  Limitations - requirements  “Conclusion”

Olof Tengblad R3B colaboration: Milano Oct Energy loss of charged particles: Bethe-Bloch equation energy loss detected incident energy (MeV)

Olof Tengblad R3B colaboration: Milano Oct Proposed scenario  Two layers detector :  Simplification the estimated final energy is proportional to the energy deposited in each layer E Ë=  f(  E 1 ) + g(  E 2 )  E 1  E 2

Olof Tengblad R3B colaboration: Milano Oct SRIM Simulations: Deposited energy of protons Fit: Gaussian with a constant background

Olof Tengblad R3B colaboration: Milano Oct SRIM Simulations: protons E  E 1  E 2  Material: LaBr 3 (:Ce)  Thickness: 1mm+20mm  Monte Carlo: SRIM 2003         

Olof Tengblad R3B colaboration: Milano Oct Energy resolution E            200±50MeV (  E/E=25%)  200±10MeV (  E/E=5%) protons of 200MeV deposit an energy of: 1mm LaBr 3 = 1.49±0.23 MeV 20mm LaBr 3 = 31.32±1.13 MeV

Olof Tengblad R3B colaboration: Milano Oct First Conclusions If not fully stopped, two  E-detectors are required A too thin detector gives bad estimation of the energy leading to bad resolution  first detector should be thick in order to totally absorb protons up to rather high energy Second detector placed to solve the ambiguity on the signal The gammas will deposit most of the energy aroundthe first hit, which we want to be the first detector, why this crystal should have a good E  resolution.  Two detectors of different materials with a unique PM or APD?  Optically compatible

Olof Tengblad R3B colaboration: Milano Oct Detector spectral response matching Hautefeuille et al. J. of Crystal Growth (in press) Emission Absorption  Emission and absorption spectra do not overlap » emitted light is not re-absorbed  Emission spectra shifted to lower energies  LYSO: excitation [nm] =262, 293, 357 Max. emission [nm] =398, 435

Olof Tengblad R3B colaboration: Milano Oct Emission spectra Max. emission [nm] Decay time[ns] CsI(Tl) BGO CsI pure31516 LYSO (Ce) CsI(Na) NaI(Tl) LaBr 3 (Ce)38016 LaCl 3 (Ce)35028 NaI(Tl) BGO CsI(Tl) LYSOLaBr 3

Olof Tengblad R3B colaboration: Milano Oct Scintillators W.W. Moses NIMA 487 (2002) 123  LYSO (Lu 1.8 Y 0.2 SiO 5 :Ce) Light output photons/MeV Decay time 45-60ns Density 7.1 g/cm 2  LaBr 3 (:Ce) Light output photons/MeV Decay time 16ns Density 5.3 g/cm 2

Olof Tengblad R3B colaboration: Milano Oct SRIM simulations: protons  Materials: LYSO(:Ce) + LaBr 3 (:Ce)  Thickness: 30mm + 20mm  Monte Carlo: SRIM 2003 E  E 1  E 2

Olof Tengblad R3B colaboration: Milano Oct Energy resolution          E +  E? protons of 200MeV deposit an energy of: 30mm LYSO= 67.44±1.77 MeV 20mm LaBr 3 = 43.50±3.11MeV  200±7MeV (  E/E=3.5%)  200±10MeV (  E/E=5%)

Olof Tengblad R3B colaboration: Milano Oct Gamma absorption  Minimum absorption for  ~5MeV  55% of  absorbed in 30mm LYSO (Prelude)

Olof Tengblad R3B colaboration: Milano Oct Second Conclusion  Protons Two detectors are required to detect 300 MeV protons The energy of the incident protons can be estimated with an error of ~3-4% with the LYSO + LaBr 3 (Ce) solution  Gammas Most of the energy of the gammas is deposited around the first hit, why this should happen in the first layer! 55% of  are absorbed in 30mm LYSO when the energy of the incident gammas is 5MeV >55% of  are absorbed for E ≠ 5MeV in 30mm LYSO The rest will be absorbed in the second layer If first gamma detected in second layer; event discarded However, the gamma resolution in LYSO is about 6% If this  -resolution is good enough one would choose LSO + LYSO as the resolution of LaBr is too good to be place as second layer.

Olof Tengblad R3B colaboration: Milano Oct Final Conclusion  To obtain the optimum situation both for protons and gammas; First crystal layer relatively thick and of a material with excellent gamma resolution,  LaBr 3 (Ce) of 30 mm  = 380nm decaytime= 16ns Second crystal layer of a material emitting at shorter wavelength and with a decay constant different in order to separate the signals and that the second detector is transparent to the first.  LaCl 3 (Ce) of 150 mm  = 350nm decaytime= 25ns This will detect protons up to 280 MeV with an proton energy resolution of the order of 2%. One could, however, live with a much shorter LaCl 3 (Ce) or one could combine the LaBr 3 (Ce) with pure CsI as a cheaper solution.

Olof Tengblad R3B colaboration: Milano Oct Tests Two H8500 Flat panel Photomultiplier tube 8x8 MPET-H8500 readout interface Two scintillator arrays : BrilLanCe 380 Full detection area 2”x 2”, 4x4x30 mm 3, encapsulated in Al housing, 3mm glass window 10x10 crystals PreLuDe 420 Full detection area 2”x 2”, 4x4x30 mm 3 12x12 crystals

Olof Tengblad R3B colaboration: Milano Oct Prelude420(60mm) vs CsI(90mm) Protons: Deposit energy Protons: Range in material Gamma: Absorption vs energy

Olof Tengblad R3B colaboration: Milano Oct LaBr 3 (:Ce) different thicknesses Protons: Deposit energy Protons: Range in material Gamma: Absorption vs energy

Olof Tengblad R3B colaboration: Milano Oct mm crystal Protons: Deposit energy Protons: Range in material Gamma: Absorption vs energy

Olof Tengblad R3B colaboration: Milano Oct CsI 90 – 200 mm Protons: Deposit energy Protons: Range in material Gamma: Absorbtion vs energy